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Convergence of a Queueing System in Heavy Traffic

with General Abandonment Distributions

Chihoon Lee
Department of Statistics
Colorado State University

Fort Collins, CO 80523, USA

Ananda Weerasinghe ∗

Department of Mathematics
Iowa State University
Ames, IA 50011, USA

October 8, 2010

Abstract

We analyze a sequence of single-server queueing systems with impatient customers in heavy
traffic. Our state process is the offered waiting time and the customer arrival process has a
state dependent intensity. Service times and customer patient-times are independent, i.i.d. with
general distributions subject to mild constraints. We establish the heavy traffic approximation
for the scaled offered waiting time process and obtain a diffusion process as the heavy traffic
limit. The drift coefficient of this limiting diffusion is influenced by the sequence of patience-
time distribution in a non-linear fashion. We also establish an asymptotic relationship between
the scaled version of offered waiting time and queue-length. As a consequence, we obtain the
heavy traffic limit of the scaled queue-length. We introduce an infinite-horizon discounted cost
functional whose running cost depends on the offered waiting time and server idle time processes.
Under mild assumptions, we show that the expected value of this cost functional for the n-th
system converges to that of the limiting diffusion process as n tends to infinity.

Keywords: Stochastic control, Controlled queueing systems, Heavy traffic theory, Diffusion approx-
imations, Customer abandonment, Customer impatience, Reneging.
AMS Subject Classifications: primary 60K25, 68M20, 90B22; secondary 90B18.

1 Introduction

In this article, we study a heavy traffic approximation result for a sequence of single-server queue-
ing systems with impatient customers. Customers are served under First-Come-First-Serve (FCFS)
service discipline. This sequence of queueing systems with a similar dynamic structure is parame-
terized by n = 1, 2, 3, . . . and is in heavy traffic in a sense that will be made precise in Section
3. The arrival process of the n-th system has a dynamic intensity which depends on the offered
waiting time and this intensity is of order O(n) for large n. The service times are i.i.d. with general
distributions and for the n-th system, mean service time is of order O(1/n), and thus creating heavy
traffic. The customers abandon the system if the service is not initiated within their patience-time.
They act independently and in the n-th system, their patience-times are i.i.d. distributed and this
distribution may depend on n.

∗Research supported by U. S. Army Research Office grant W911NF0710424.
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In many real world examples, such as telephone call centers or internet traffic, customers may
not observe the actual queue-length but often approximate waiting time is available to them. In
our model, offered waiting time (or the workload process) is the basic state process and the arrival
intensity of the customers is dependent on it. To motivate this work, consider a processing facility
where each customer or job arrives with a deadline. Upon the arrival of each customer, a system
manager learns about the customer deadline as well as the required service time. Hence, the
information on offered waiting time is available to the manager and accordingly, the manager can
influence the arrival intensity by means of admission control. In practice, customer abandonment
is a well documented significant feature of the queueing systems. In the queueing models, Palm
[23] initiated the importance of incorporating this feature. In the telephone call center setting with
many-server systems, such models are considered in [14, 19, 11, 12, 36, 29, 22, 25]. For single server
setting, Ward and co-authors addressed several performance evaluation issues of such systems in
[30, 31, 26]. For general queueing systems in heavy traffic (with or without customer abandonment),
there are numerous articles that address the issue of system optimization and [3, 5, 15, 16] is a
partial list of such articles.

The results established in this article are closely related to the works of [26] and [30, 31], but
they differ in three main aspects: First, in the n-th system, the intensity of our arrival process is
non-constant and may depend on the current value of the offered waiting time. Loosely speaking,
system manager may exercise adjustments of order O(

√
n) to the admission rate of the n-th system

without disturbing the delicate balance in heavy traffic conditions. But such adjustments have
an influence on the drift coefficient of the limiting diffusion process as described in our Theorem
4.8. In controlled queueing systems, such adjustments are known as “thin control” and we refer to
[1, 16] for such problems. Second, our assumptions on patience-time distribution are quite general.
In Markovian abandonment regimes [30] and also in [31] (for many-server queues in Halfin-Whitt
heavy traffic regime see [4, 12, 11, 21, 14, 22, 25]) where the same patience-time distribution is used
in the modeling, only the behavior of patience-time distribution in a neighborhood of origin effects
the dynamics of the limiting diffusion. But, in an interesting article [26], Reed and Ward consider
the patient time distribution of the n-th system to have a hazard rate intensity dependent on n (see
[25] for a many-server Halfin-Whitt heavy traffic case). They provide statistical data in support
of their choice. The dynamics of their limiting diffusion process depends on the entire patience-
time distribution function. Our results incorporates both of these scenarios in the same general
framework as illustrated in the examples of Section 3. Our assumptions can be satisfied by many
other classes of patience-time distribution functions, and Theorem 4.8 describes the effect of these
distribution functions on the limiting diffusion. One key ingredient in our proof of Theorem 4.8 is
the martingale functional central limit theorem, and this approach helps us to accommodate these
general assumptions. This is in contrast with the proofs in [26]. Third, we employ Theorem 4.8
to establish the convergence of the expected value of an infinite horizon discounted cost functional
of the n-th system to that of the limiting diffusion process as n → ∞. Such convergence results
for the expected value of the cost functionals are important in deriving asymptotically optimal
strategies for the system optimization problems in heavy traffic regime. We refer to [32, 16] (and
[5, 4, 22] in many-server Halfin-Whitt heavy traffic regime) for such results related to controlled
queueing systems. We intend to use the results obtained here to address such a controlled system
optimization problem in a future article.

This article is organized as follows. In Section 2 we introduce the basic model. We give details
about the construction of the arrival process with an intensity dependent on offered waiting time,
and introduce the key martingale relevant to the arrival process. Such a martingale formulation is
used in [35] for the heavy traffic analysis of queue length processes, when the arrival and service
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rates are dependent on queue length. In Section 3, we speed up the arrival rates to be of order
O(n) and to balance this and to obtain heavy traffic conditions, we make the average service time
in the n-th system to be 1

n . We carefully lay out our assumptions on arrival intensities, service
times and patience-time distributions. Section 4 addresses the weak convergence of scaled offered
waiting time processes in heavy traffic. We establish the fluid limit first and then use it to obtain
the diffusion limit for the scaled offered waiting time process. Main result in this section is Theorem
4.8, and we use martingale functional central limit theorem to obtain this weak convergence result.
In Section 5, we establish the asymptotic relationship between the scaled queue length and scaled
offered waiting time processes. Here we follow the proof of a similar result in [26], but supplement
it with necessary additional estimates to accommodate our general assumptions. We address the
issue of convergence of the expected value of infinite horizon discounted cost functional of the n-th
system to that of the limiting diffusion under heavy traffic in Section 6. In this cost functional,
the running cost function depends on offered waiting time and server idle time. Since the running
cost function is unbounded and is of polynomial growth, we need a few additional assumptions
there. To reach our conclusion, we establish necessary moment estimates and combine them with
the weak convergence result in Theorem 4.8. For controlled queueing networks, such convergence
results are obtained in [32, 16] and in the case of many-server systems, we refer to [5].

The following notation is used. The set of positive integers is denoted by IN , the set of real
numbers by IR and nonnegative real numbers by IR+. Let IRd be the d-dimensional Euclidean
space and for x ∈ IRd the L1 norm of x, i.e.,

∑d
i=1 |xi|, will be denoted by |x|. For a, b ∈ IR, let

a ∧ b .= min{a, b} and a+ = max{a, 0}, a− = −min{a, 0}. We use [a] to denote the integer part of
a ∈ IR. The convergence in distribution of random variables (with values in some Polish space) Φn to
Φ will be denoted as Φn ⇒ Φ. With an abuse of notation weak convergence of probability measures
(on some Polish space) µn to µ will also be denoted as µn ⇒ µ. When sup

0≤s≤t
|fn(s)− f(s)| → 0 as

n → ∞, for all t ≥ 0, we say that fn → f uniformly on compact sets. For a real valued function
f defined on some metric space X and T ∈ IR+, define ||f ||T = sup

x∈[0,T ]
|f(x)|. Finally, let D[0,∞)

denote the class of right continuous functions with having left limit defined from [0,∞) to IR,
equipped with the usual Skorokhod topology.

2 Basic Model

First we describe the queueing model with FCFS service discipline and customer abandonment
on a probability space (Ω,F , IP ). Let A(t) be the number of customers arrived at the station by
time t. The random variable tj represents the arrival time of the j-th customer, and we assume
IE(tj) <∞. Service time of the j-th customer is represented by the random variable vj . We assume
that the customers are impatient and the j-th customer may leave the system at a random time
dj if the service is not completed by then. The sequences (vj) and (dj) are assumed to be i.i.d.
and independent of each other, IE(v1) = 1 and var(v1) = σ2

s < ∞. We let F be the cumulative
distribution function of d1.

The amount of time an incoming customer at time t has to wait for service depends upon the
service times of the non-abandoning customers, who are already waiting in the queue. Similar to
[26], we define the offered waiting time process

V (t) ≡
A(t)∑
j=1

vj1[V (tj−)<dj ] −
∫ t

0
1[V (s)>0](s)ds. (2.1)

3
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Figure 1: A typical sample path of V (t).

The process {V (t) : t ≥ 0} is non-negative, has sample paths which are right continuous with left
limits and also it has upward jumps at the arrival epochs (tj). On the time interval [tj , tj+1), V (t)
is continuous, non-increasing and satisfies V (t) = max{0, V (tj)− (t− tj)}. The picture depicted in
Figure 1 shows a typical sample path of the process {V (t)}t≥0. The quantity V (t) can be interpreted
as the time needed to empty the system from time t onwards if there are no arrivals after time t,
and hence it is also known as the workload at time t. We note that once V (tn) is known then V (t)
is well defined on the next interval [tn, tn+1) (see below (2.9) for more details).

Next, we define the σ-fields (F̂n)n≥1 where

F̂n ≡ σ((t1, v1, d1), . . . , (tn, vn, dn), tn+1) ⊆ F . (2.2)

Notice that V (tn−) is F̂n−1-measurable and the abandonment time dn of the n-th customer is
independent of F̂n−1. Hence,

IP [V (tn−) ≥ dn|F̂n−1] = F (V (tn−)) (2.3)

holds, where F is the distribution function of dn. We introduce two martingales (Mv(n)) and
(Md(n)) with respect to the filtration (F̂n)n≥1 introduced in (2.2). We let

Mv(n) ≡
n∑

j=1

(vj − 1)1[V (tj−)<dj ] (2.4)

Md(n) ≡
n∑

j=1

(
1[V (tj−)≥dj ] − IE[1[V (tj−)≥dj ]|F̂j−1]

)
(2.5)

for all n ∈ IN . Clearly, Md(n) is an F̂n-martingale (see also [26]). Here we show that Mv(n) also is
an F̂n-martingale. Since V (tn+1−) and dn+1 are measurable with respect to σ(F̂n, dn+1) and vn+1

is independent of σ(F̂n, dn+1), it follows that

IE
[
(vn+1 − 1)1[V (tn+1−)<dn+1]|σ(F̂n, dn+1)

]
= 1[V (tn+1−)<dn+1]IE(vn+1 − 1) = 0.

Now conditioning both sides of (2.4) with respect to F̂n, we can see that Mv(n) is an F̂n-martingale
as well. Using (2.3) in (2.5), we also see that for all n ∈ IN

Md(n) =
n∑

j=1

[
1[V (tj−)≥dj ] − F (V (tj−))

]
. (2.6)
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Using (2.1), (2.3)–(2.6) and after simple algebraic manipulations, we obtain the following system
equation: for all t ≥ 0,

V (t) +
∫ t

0
F (V (s−))dA(s) = (A(t)− t) +Mv(A(t))−Md(A(t)) + I(t), (2.7)

where

I(t) ≡
∫ t

0
1[V (s)=0](s)ds, (2.8)

and I(t) represents the idle time at the station during time interval [0, t].
To describe the arrival process A(·) with arrival times (tj), let λ(·) be a given Borel measurable

function defined on [0,∞) which satisfies the condition 0 < ε < λ(x) < C for all x ≥ 0. Here ε and
C are positive constants. In our analysis, we assume that{

A(t)−
∫ t

0
λ(V (s))ds : t ≥ 0

}
(2.9)

is a martingale with respect to the filtration (Gt)t≥0, where Gt ≡ σ(A(s), V (s) : s ≤ t). Notice that
once the value of V (tn) is known, the process V (t) can be obtained on [tn, tn+1) as explained earlier.
Hence, the quantity

∫ t
0 λ(V (s))ds is also known for all tn ≤ t < tn+1.

Following several results in [8], here we indicate the construction of such a process A(·) and
several of its properties. We begin with a probability space (Ω,F , IP0). Assume that (vi) and (di)
are independent sequences of positive i.i.d. random variables in this space. Recall that vi has
mean 1 and variance σ2 while di has distribution function F . We introduce the σ-algebra G̃0 by
G̃0 ≡ σ((vi, di) : i = 1, 2, . . .). Next, we let A(·) be a standard (unit intensity) Poisson process
which is independent of G̃0, and (ti) are the jump times of A(·). Using this Poisson process A(·),
the sequences (vi) and (di), we can introduce the offered waiting time process V (·) as in (2.1). We
introduce two filtrations (Gt) and (G̃)t by

Gt ≡ σ(A(s), V (s) : 0 ≤ s ≤ t) and G̃t ≡ Gt ∨ G̃0, (2.10)

that is, G̃t is the σ-algebra generated by the sets in Gt ∪ G̃0. Next, we introduce the left-continuous
version Ṽ (·) of the offered waiting time process by

Ṽ (t) =

{
V (t), if t 6= ti,

V (ti−), if t = ti.
(2.11)

Thus Ṽ (·) is (Gt)-adapted left-continuous process with left limits. Consequently, Ṽ (·) is a predictable
process with respect to each of the filtrations (Gt) and (G̃t) (see Section 3 of Chapter 1 in [8]). Next,
we intend to apply change of intensities for point processes (cf. Section 2 of Chapter 6, [8]). We
introduce the process L(·) by

L(t) =


exp

(∫ t

0
(1− λ(Ṽ (s)))ds

)
, if t < t1,

exp
(∫ t

0
(1− λ(Ṽ (s)))ds+

∫ t

0
log(λ(Ṽ (s)))dA(s)

)
, if t ≥ t1.

Since λ(·) is Borel measurable and 0 < ε < λ(x) < C for all x ≥ 0, we can use theorems T2, T3
and T4 in pages 165–168 of [8] to verify that L(·) is a (G̃t)-martingale and IE[L(t)] = 1 for each
t ≥ 0. Since L(·) is adapted to (Gt)t≥0, it is also a (Gt)-martingale.
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Let T > 0 be fixed and introduce the probability measure IPT on G̃T by

dIPT

dIP0
= L(T ). (2.12)

Then by Theorem T3 in Chapter 6 of [8], the process A(·) has (IPT , G̃t)-intensity λ(Ṽ (t)) for
0 ≤ t ≤ T . Using Theorem T9 in page 28 of [8] and by a straightforward computation, it follows
that {A(t) −

∫ t
0 λ(Ṽ (s))ds : 0 ≤ t ≤ T} is a (G̃t)0≤t≤T -martingale with respect to IPT . Since

{A(t) −
∫ t
0 λ(Ṽ (s))ds : 0 ≤ t ≤ T} is adapted to (Gt)0≤t≤T , it is also a (Gt)0≤t≤T -martingale with

respect to IPT . It is evident that the probability measures (IPT )T>0 are consistent and thus there
is a probability measure IP on G̃∞ so that IPT and IP agree on G̃T .

Since each IPT and IP0 agree on G̃0, it follows that (vi) and (di) are independent sequences of
i.i.d. random variables with desired distribution with respect to IP . Also since Ṽ (t) = V (t) except
on a set of Lebesgue measure zero, it follows that

∫ t
0 λ(Ṽ (s))ds =

∫ t
0 λ(V (s))ds for all t ≥ 0. Hence,

we conclude that with respect to probability IP ,{
A(t)−

∫ t

0
λ(V (s))ds : t ≥ 0

}
is a (G̃t)-martingale, (2.13)

and as a consequence,{
A(t)−

∫ t

0
λ(V (s))ds : t ≥ 0

}
is also a (Gt)-martingale. (2.14)

The martingale property of this process with respect to (G̃t) filtration will be used only in the proof
of Proposition 4.10. This completes the construction of the arrival process A(·).

We note that since A(·) is a point process with (Gt)-intensity λ(Ṽ (t)), we can use the random
change of time method (see Theorem T16 and Lemma L17 in Section 6 of Chapter 2, [8]) to obtain
the convenient representation

A(t) = Y

(∫ t

0
λ(Ṽ (s))ds

)
= Y

(∫ t

0
λ(V (s))ds

)
, (2.15)

where Y (·) is a standard Poisson process. This representation helps us in several estimates.

3 Heavy Traffic Regime

We consider a sequence of queueing systems indexed by n ∈ IN . In our analysis, basic state process
of the n-th system will be the offered waiting times process Vn(·). The arrival rate nλn(Vn(·)) of
the n-th system is state dependent and the j-th customer arrival occurs at time tnj . The cumulative
number of customer arrivals in [0, t] in the system is given by An(t). When n becomes large, arrival
rate of the n-th system becomes large and thus to obtain heavy traffic conditions, we need to make
the service time of the n-th system small as described below.

For the j-th arrival in the n-th system, service time is vn
j ≡ vj/n, and the abandonment time

is denoted by dn
j . As described in [26], the basic equation of the offered waiting time process

{Vn(t) : t ≥ 0} is given by

Vn(t) =
1
n

An(t)∑
j=1

vj1[Vn(tnj −)<dn
j ] −

∫ t

0
1[Vn(s)>0](s)ds, (3.1)

6



where An(·) is the arrival process. We introduce the filtration {Gn
t : t ≥ 0} of the n-th system by

Gn
t ≡ σ(An(s), Vn(s) : s ≤ t). We also introduce the filtration (G̃n

t ) as similar to (2.10). Next, we
define the discrete time filtration (F̂n

i )i≥1 by

F̂n
i ≡ σ((tn1 , v

n
1 , d

n
1 ), . . . , (tni , v

n
i , d

n
i ), tni+1) (3.2)

for i ≥ 1 and let F̂n
0 ≡ σ(tn1 ). Next, we define the associated continuous time filtration (Fn

t )t≥0 by

Fn
t ≡ F̂n

[nt] ≡ σ((tn1 , v
n
1 , d

n
1 ), . . . , (tn[nt], v

n
[nt], d

n
[nt]), t

n
[nt]+1). (3.3)

Now we describe our basic assumptions:

Assumption 3.1.

(i) The sequences (vn
j )j≥1 and (dn

j )j≥1 are non-negative valued, i.i.d. random variables with
vn
j ≡

vj

n for all j ≥ 1, IE(vj) = 1 and IE(vj − 1)2 = σ2
s > 0. Furthermore, vn

j+1 is independent
of F̂n

j and the sequence (dn
j )j≥1 is independent of the sequence (tnj , v

n
j )j≥1.

(ii) The arrival process An(·) of the n-th system has an associated intensity process nλn(Vn(·));
that is, {

An(t)− n

∫ t

0
λn(Vn(s))ds : t ≥ 0

}
(3.4)

is a (Gn
t )-martingale and (G̃n

t )-martingale as well.

Assumption 3.2.

(i) The function λn(·) is Borel measurable on [0,∞) and there exist two positive constants
ε0, C0 > 0 (independent of n and x) such that 0 < ε0 < λn(x) < C0 for all x ≥ 0 and
n ≥ 1.

(ii) For each K > 0, lim
n→∞

sup
x∈[0,K]

|λn(x)− 1| = 0.

(iii) There exist small δ0 > 0 and M > 0 such that sup
n≥1

sup
x∈[0,δ0]

√
n(λn(x)− 1)+ ≤M <∞.

(iv) There exists a non-negative continuously differentiable function u(·) defined on [0,∞) such
that for each K > 0,

lim
n→∞

sup
x∈[0,K]

∣∣∣∣√n(1− λn

(
x√
n

))
− u(x)

∣∣∣∣ = 0.

Assumption 3.3. Let Fn(·) be the right continuous abandonment distribution function of the i.i.d.
sequence (dn

j )j≥1. Assume that Fn(0) = 0 and there is a non-negative continuously differentiable
function H(·) such that for each K > 0,

lim
n→∞

sup
x∈[0,K]

∣∣∣∣√nFn

(
x√
n

)
−H(x)

∣∣∣∣ = 0.

As a consequence, we have H(0) = 0 and lim
n→∞

Fn(x/
√
n) = 0 for each x ≥ 0.

7



Remark 3.4. We provide concrete examples that satisfy the above set of assumptions.

1. An example of arrival rate function λn(·): Take

λn(x) = 1− u(
√
nx)√
n

+
θn(x)√
n
,

where θn(·) is a bounded function such that lim
n→∞

||θn||K = 0 for each K > 0.

2. Examples of abandonment distribution functions (Fn):

(a) Let Fn ≡ F for all n, and F be differentiable with a bounded derivative on [0, δ] for some
δ > 0. Hence, H(x) = F ′(0)x in Assumption 3.3.

(b) We may take Fn(x) = 1 − exp(−
∫ x
0 h(

√
nu)du) for x ≥ 0, where h is a non-negative

continuous function as in (14) of [26]. In this case, H(x) =
∫ x
0 h(u)du and it satisfies

Assumption 3.3 since h is continuous. Indeed, for any general sequence (Fn), if F ′n( x√
n
)

converges to a non-negative function h(x) uniformly on compact sets, then (Fn) satisfies
Assumption 3.3 with the limiting function H(x) =

∫ x
0 h(u)du.

(c) Here we provide a simple example to illustrate that there can be many limiting func-
tions H(·) other than the ones described in (a) and (b) above. Let H(·) be any non-
negative, non-decreasing, continuously differentiable function which satisfies H(0) = 0
and H(+∞) = +∞. We let Fn(x) = 1√

n
min{H(

√
nx),

√
n} for all x ≥ 0. Then, for

each n ≥ 1, Fn(0) = 0, Fn(+∞) = 1 and Fn is a continuous, non-decreasing probability
distribution function. It is evident that the sequence of distribution functions Fn satisfies
the Assumption 3.3 with limiting function H(·).

Remark 3.5. To describe a specific example of a heavy traffic regime using the same arrival
process, we can consider the system (A(·), V (·)) satisfying (2.1), (2.7)–(2.9). Then we can scale
these processes as described next. First, we introduce the filtration (Gn

t ) by Gn
t ≡ Gnt for each

n ≥ 1, where Gt = σ(A(s), V (s) : 0 ≤ s ≤ t). Now let An(t) ≡ A(nt) and Vn(t) ≡ V (nt)
for all t ≥ 0. Then using (2.9) and by a change of variable in integration, it easily follows that
{An(t)− n

∫ t
0 λn(Vn(s))ds : t ≥ 0} is a (Gn

t )-martingale.

Throughout, one can consider the arrival intensity λn(·) as a “control process” related to the n-th
system. In a future article, we intend to address an optimal control problem associated with this
heavy traffic regime, which minimizes a prescribed cost functional. We refer to [2, 3, 16] for related
“thin control” problems and also refer to Chapter VII of [8].

It will be helpful to define fluid-scaled and diffusion-scaled quantities to carry out our analysis.
We let

Ān(t) ≡ An(t)
n

and Ân(t) ≡ 1√
n

(
An(t)− n

∫ t

0
λn(Vn(s))ds

)
(3.5)

for all t ≥ 0. We also introduce the diffusion-scaled offered waiting time process

V̂n(t) ≡
√
nVn(t) for all t ≥ 0. (3.6)

We then have diffusion-scaled martingales with respect to the filtration (Fn
t ) (see (3.3)), given by

M̂v
n(t) ≡ 1√

n

[nt]∑
j=1

(vj − 1)1[Vn(tnj −)<dn
j ], M̂d

n(t) ≡ 1√
n

[nt]∑
j=1

(
1[Vn(tnj −)≥dn

j ] − IE(1[Vn(tnj −)≥dn
j ]|F̂n

j−1)
)
.

(3.7)
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Using (3.1), (3.4) and the state equation described in (2.7), and after simple algebraic manipula-
tions, we obtain

Vn(t) +
1
n

∫ t

0
Fn(Vn(s−))dAn(s) =

1
n

(
An(t)− n

∫ t

0
λn(Vn(s))ds

)
+

1√
n

(
M̂v

n(Ān(t))− M̂d
n(Ān(t))

)
+
∫ t

0
[λn(Vn(s))− 1]ds+ In(t), (3.8)

where In(t) =
∫ t
0 1[Vn(s)=0]ds for all t ≥ 0.

4 Weak Convergence

4.1 Fluid limits

Throughout we use || · ||T defined by ||f ||T = sup
t∈[0,T ]

|f(s)| for any f in D[0,∞). Our aim here is

first to establish the fluid limit lim
n→∞

||Vn||T = 0 in probability for each T > 0. We intend to employ

several properties of the Skorokhod map Γ (see, for example, [20, 9, 33, 17]) in the discussion below.
The Skorokhod map Γ : D[0,∞) → D[0,∞) is explicitly defined by

Γ(f)(t) = f(t) + sup
s∈[0,t]

(−f(s))+ for all t ≥ 0. (4.1)

Given a function f in D[0,∞), the pair (Γ(f), sup
s∈[0,·]

(−f(s))+) is called the “Skorokhod decompo-

sition” of f and this decomposition is unique. In (3.8), we let

Xn(t) ≡ 1
n

(An(t)− nt) +
1√
n

(
M̂v

n(Ān(t))− M̂d
n(Ān(t))

)
− 1
n

∫ t

0
Fn(Vn(s−))dAn(s). (4.2)

Thus, by (3.8)–(4.2), we observe that (Vn, In) is the Skorokhod decomposition of the process Xn

and thus
Vn(t) = Γ(Xn)(t), for all t ≥ 0. (4.3)

Theorem 4.1. (Fluid limit) For each T > 0,

||Vn||T ⇒ 0 as n→∞. (4.4)

Proof. First we show that

lim
n→∞

1√
n
||Ân||T = 0 a.s., (4.5)

for each T > 0. For the n-th system, we consider the martingale Ân(·) described in (3.5). Using
a random time change theorem for point processes (use Theorem T16 in page 41 of [8] with Ft ≡
σ(An(s), Vn(s) : 0 ≤ s ≤ t) and Lemma L17 therein and the fact that λn(x) > ε0 > 0 to guarantee∫∞
0 nλn(Vn(s))ds = +∞ a.s.), there is a unit intensity Poisson process Yn(·) such that Ân(t) =
Ŷn(
∫ t
0 λn(Vn(s))ds) for all t ≥ 0. Here Ŷn(t) ≡ (Yn(nt) − nt)/

√
n for all n ≥ 1. Thus, using part

9



(i) of Assumption 3.2, we have ||Ân||T ≤ ||Ŷn||C0T and we can estimate IP [ 1√
n
||Ân||T > ε] for ε > 0

arbitrary. Since Ŷn also is a martingale, using Doob’s inequality we have

IP

[
1√
n
||Ân||T > ε

]
≤ IP

[
||Ŷn||C0T > ε

√
n
]
≤ IE[φ(|Ŷn(C0T )|)]

φ(ε
√
n)

,

where φ(·) is a non-negative, convex, strictly increasing function on IR+. Let θ > 1/2 be fixed.
Then there is a real number xθ > 0 so that ex < (1+x)+θx2 for 0 < x < xθ. We pick any α > 0 so
that 0 < α < xθ and let φ(x) ≡ eαx for all x > 0. Then by an elementary computation, we obtain

IE[φ(|Ŷn(C0T )|)]
φ(ε

√
n)

≤ eθα2C0T e−ε
√

n.

(See also Theorem 5.18, page 114 of Chen and Yao [10].) Consequently, IP [ 1√
n
||Ân||T > ε] ≤

eθα2C0T e−ε
√

n, where θ > 1/2, α > 0 and C0 > 0 are constants independent of n. Now we can
apply Borel-Cantelli lemma to conclude the a.s. limit in (4.5). Hence, there is n0(ω) ∈ IN such
that Ân(T ) ≤

√
n for all n ≥ n0(ω). This together with Assumption 3.2(i) implies that

An(T ) ≤
√
nÂn(T ) + C0nT ≤ n+ C0nT ≤ K1n for all n ≥ n0(ω),

for some constant K1 > 0. Next, using (3.1)

||Vn||T ≤
1
n

An(T )∑
j=1

vj ≤
1
n

K1n∑
j=1

vj for all n ≥ n0(ω).

But lim
n→∞

1
n

∑K1n
j=1 vj exists a.s. by SLLN and hence ||Vn||T ≤ K2T for all n ≥ n1(ω) and for some

constant K2 > 0. This, together with Assumption 3.2(ii), implies that∫ T

0
|λn(Vn(s))− 1|ds ≤ sup

x∈[0,K2T ]
|λn(x)− 1|T → 0 as n→∞.

Hence lim
n→∞

∫ T
0 |λn(Vn(s))− 1|ds = 0 a.s. Since

sup
t∈[0,T ]

|Ān(t)− t| ≤ 1√
n

sup
t∈[0,T ]

|Ân(t)|+
∫ T

0
|λn(Vn(s))− 1|ds,

using the above fact with (4.5), we obtain

lim
n→∞

sup
t∈[0,T ]

|Ān(t)− t| = 0 a.s. (4.6)

Next, we consider the martingale term 1√
n
(M̂v

n(t)− M̂d
n(t)). Notice that

IE
(
[M̂v

n ](T )
)
≤ 1
n2

[nT ]∑
j=1

IE(vj − 1)2 ≤ σ2
sT

n
→ 0 as n→∞

and similarly IE
(
[M̂d

n](T )
)
≤ 4T

n → ∞ as n → ∞. We consider the vector valued martingale

Mn(t) = (M̂v
n(t)/

√
n, M̂d

n(t)/
√
n) and define M∗

n(t) ≡ sup
s∈[0,t]

|Mn(s)| for all t ≥ 0. Using Doob’s

10



inequality once more, we obtain IE[ sup
t∈[0,T ]

|Mn(t)|2] ≤ CT/n where C > 0 is a generic constant

independent of n. We conclude that

lim
n→∞

IE

[
sup

t∈[0,T ]
|Mn(t)|2

]
= 0. (4.7)

Consequently, (M∗
n(T ))2 ⇒ 0 as n→∞. This, together with (4.6) and the random change of time

theorem (cf. Section 14, [7]), implies that

M∗
n(Ān(T )) ⇒ 0 (4.8)

as n→∞. Hence, using (4.6) and (4.8), we have

sup
t∈[0,T ]

|Ān(t)− t|+ M∗
n(Ān(T )) → 0 in probability, (4.9)

as n→∞. Let

Yn(t) ≡ Xn(t) +
1
n

∫ t

0
Fn(Vn(s−))dAn(s) =

1
n

(An(t)− nt) +
1√
n

(
M̂v

n(Ān(t))− M̂d
n(Ān(t))

)
,

(4.10)
where Xn is described in (4.2). With (4.9) in hand and using (4.2), we observe that

lim
n→∞

||Yn||T = 0 in probability, (4.11)

for each T > 0. By (4.2), we have Yn(t) ≥ Xn(t) for all t ≥ 0 and Yn(t) − Xn(t) is a non-
negative, non-decreasing process in D[0,∞). Therefore, we can use the comparison theorem for the
Skorokhod map (Propositions 3.4 and 3.5 of [9]) to conclude that

0 ≤ Vn(t) = Γ(Xn)(t) ≤ Γ(Yn)(t) for all t ≥ 0. (4.12)

Since ||Γ(Yn)||T ≤ 2||Yn||T by the Lipschitz continuity of Γ, using (4.11)–(4.12) we can conclude

lim
n→∞

||Vn||T = 0 in probability. (4.13)

This completes the proof.

Remark 4.2. In Theorem 6.4 of Section 6, we are able to show that lim
n→∞

IE [||Vn||mT ] = 0 for some

m > 2, under an additional hypothesis given in (6.6).

4.2 Diffusion limits

Here we intend to establish the weak convergence of the process V̂n(·) defined in (3.6) to a (reflected)
diffusion process. We need to establish several technical results to achieve this objective. Our first
proposition is an improvement of (4.4). Using (3.5)–(3.8), we can describe the state equation for
V̂n(·) by

V̂n(t) +
1√
n

∫ t

0
Fn

(
V̂n(s−)√

n

)
dAn(s)

= Ân(t) + M̂v
n(Ān(t))− M̂d

n(Ān(t)) +
√
n

∫ t

0

(
λn

(
V̂n(s−)√

n

)
− 1

)
ds+

√
nIn(t), (4.14)
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where In(t) =
∫ t
0 1

[bVn(s)=0]
(s)ds. Notice that (V̂n,

√
nIn) is indeed the Skorokhod decomposition of

the process
√
nXn(·) where Xn is described in (4.2). Then, Γ(

√
nXn)(t) = V̂n(t) for all t ≥ 0 where

Γ is given in (4.1). We use this fact in the following proposition.

Proposition 4.3. We have for each T > 0,

lim
K→∞

lim sup
n→∞

IP
[
||V̂n||T > K

]
= 0. (4.15)

Proof. We introduce X̂n(t) ≡
√
nXn(t) and

Ẑn(t) ≡ X̂n(t) +
1√
n

∫ t

0
Fn

(
V̂n(s−)√

n

)
dAn(s) +

√
n

∫ t

0

(
λ

(
V̂n(s−)√

n

)
− 1

)−
ds

for all t ≥ 0, where Xn is defined in (4.2) and x− = −min{x, 0}. Notice that {Ẑn(t)−X̂n(t) : t ≥ 0}
is a non-negative, non-decreasing process and thus by a comparison argument as in (4.12), we obtain
0 ≤ V̂n(t) ≤ Γ(Ẑn)(t) for all t ≥ 0. Consequently, using the Lipschitz continuity of Γ, we get

||V̂n||T ≤ 2||Ẑn||T for all T ≥ 0.

But Ẑn(t) = Ân(t) + M̂v
n(Ān(t)) − M̂d

n(Ān(t)) +
√
n
∫ t
0 (λn(Vn(s)) − 1)+ds for all t ≥ 0, and hence

we have

||V̂n||T ≤ C1

[
||Ân||T + sup

t∈[0,T ]
|M̂v

n(Ān(t))|+ sup
t∈[0,T ]

|M̂d
n(Ān(t))|+

√
n

∫ T

0
(λn(Vn(s))− 1)+ds

]
,

(4.16)
where C1 > 0 is a generic constant independent of T . To estimate IP [||V̂n||T > K] for K > 0, we
estimate the probability corresponding to each term in the right hand side of (4.16). Throughout,
we consider K > 0 to be a generic constant. First, we estimate IP [||Ân||T > K]. Using the same
technique used in the proof of (4.5), we obtain

IP
[
||Ân||T > K

]
≤ IE|Ŷn(C0T )|2

K2
≤ CT

K2
,

where C0 > 0 is the constant as in Assumption 3.2 (i) and C > 0 is a generic constant independent
of K. Here Ŷn(t) ≡ (Yn(nt) − nt)/

√
n for all t ≥ 0 and Yn(·) is a unit intensity Poisson process.

Hence
lim

K→∞
lim sup

n→∞
IP
[
||Ân||T > K

]
= 0. (4.17)

Next we consider IP [ sup
t∈[0,T ]

|M̂v
n(Ān(t))| > K], and here we intend to use (4.6). We have

IP

[
sup

t∈[0,T ]
|M̂v

n(Ān(t))| > K

]
≤ IP

[
sup

t∈[0,T ]
|M̂v

n(Ān(t))| > K, Ān(T ) ≤ 2T

]
+ IP [Ān(T ) > 2T ]

≤ IP

[
sup

t∈[0,2T ]
|M̂v

n(t)| > K

]
+ IP [Ān(T ) > 2T ].
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Notice that [M̂v
n ](t) ≤

∑[nt]
j=1(vj−1)2/n and hence IE([M̂v

n ](2T )) ≤ 2Tσ2
s , where σ2

s ≡ IE(vj−1)2 > 0

is a finite constant. Thus, IP

[
sup

t∈[0,2T ]
|M̂v

n(t)| > K

]
≤ CT/K2 where C > 0 is a constant indepen-

dent of T and n. Hence lim
K→∞

lim sup
n→∞

IP

[
sup

t∈[0,2T ]
|M̂v

n(t)| > K

]
= 0 and by (4.6), lim

n→∞
IP [Ān(T ) >

2T ] = 0. Thus we have

lim
K→∞

lim sup
n→∞

IP

[
sup

t∈[0,T ]
|M̂v

n(Ān(t))| > K

]
= 0. (4.18)

The proof of lim
K→∞

lim sup
n→∞

IP

[
sup

t∈[0,T ]
|M̂d

n(Ān(t))| > K

]
= 0 is very similar to that of (4.18). For

the last term in the right hand side of (4.16), we intend to use (4.4). Recall δ0 > 0 and M > 0 are
as in Assumption 3.2(iii). Then we have

IP

[√
n

∫ T

0
(λn(Vn(s))− 1)+ds > K

]
≤ IP

[√
n

∫ T

0
(λn(Vn(s))− 1)+ds > K, ||Vn||T < δ0

]
+IP [||Vn||T ≥ δ0]

≤ IP [MT > K, ||Vn||T ≤ δ0] + IP [||Vn||T ≥ δ0] .

Notice that lim
K→∞

IP [MT > K, ||Vn||T ≤ δ0] = 0 and by (4.13) we obtain

lim
n→∞

IP [||Vn||T ≥ δ0] = 0.

Consequently,

lim
K→∞

lim sup
n→∞

IP

[√
n

∫ T

0
(λn(Vn(s))− 1)+ds > K

]
= 0 (4.19)

Now, (4.16)–(4.19) imply (4.15) and this completes the proof.

Next, we introduce

Rn(i) ≡
i∑

j=1

1[Vn(tnj −)≥dn
j ], (4.20)

which represents the number of customers who abandoned the system among the first i customers.
We also define its fluid-scaled term

R̄n(t) ≡ 1
n
Rn([nt]) =

1
n

[nt]∑
j=1

1[Vn(tnj −)≥dn
j ] (4.21)

for all t ≥ 0. We intend to show R̄n(·) ⇒ 0. In the case of constant intensity, this is indeed proved
in the Lemma 5.5 of [26]. But, our proof mainly uses the previous proposition and martingale
property of Ân.

Lemma 4.4. For each T > 0,
lim

n→∞
IE[R̄n(T )] = 0. (4.22)
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Proof. Consider the martingale {Ân(t) : t ≥ 0} and the stopping times {tn[nT ] : n ≥ 1}. Let M̄ > 0
and τn ≡ tn[nT ] ∧ M̄ . Then An(τn) ≤ An(tn[nT ]) = [nT ]. Since τn is a bounded stopping time,

IE[Ân(τn)] = 0. Thus 0 ≤ IE
[
An(τn)− n

∫ τn

0 λn(Vn(s−))ds
]

and using Assumption 3.2, we have
nε0IE[τn] ≤ IE[An(τn)] ≤ [nT ], which implies IE[τn] ≤ T/ε0. By letting M̄ ↑ +∞, we have

IE[tn[nT ]] ≤ C1T, (4.23)

where C1 > 0 is a generic constant. Next, we estimate IP [ max
1≤j≤[nT ]

V̂n(tnj−) ≥ K]. Let ε > 0 be

arbitrary. We pick a large constant C2 such that 0 < C1T
C2

< ε
4 . Then we have

IP

[
max

1≤j≤[nT ]
V̂n(tnj−) ≥ K

]
≤ IP

[
max

1≤j≤[nT ]
V̂n(tnj−) ≥ K, tn[nT ] < C2T

]
+ IP [tn[nT ] ≥ C2T ]

≤ IP
[
||V̂n||C2T > K

]
+
ε

4
,

where the second inequality follows from Chebyshev’s inequality and (4.23). Also,

lim
K→∞

lim sup
n→∞

IP
[
||V̂n||C2T ≥ K

]
= 0

by (4.15). Hence, there exists a K0 > 0 such that for all K > K0, lim sup
n→∞

IP [||V̂n||C2T ≥ K] < ε/4

and as a consequence we have

lim sup
n→∞

IP

[
max

1≤j≤[nT ]
V̂n(tnj−) ≥ K

]
<
ε

2
for all K > K0. (4.24)

To estimate IE[R̄n(T )], we pick K > K0 and consider IP [Vn(tnj−) > dn
j ], where j = 1, 2, . . . , [nT ].

Then it follows that

IP [Vn(tnj−) > dn
j ] ≤ IP

[
Vn(tnj−) > dn

j >
K√
n

]
+ IP

[
dn

j ≤
K√
n

]
≤ IP

[
max

1≤j≤[nT ]
V̂n(tnj−) > K

]
+ Fn

(
K√
n

)
.

By Assumption 3.3, lim
n→∞

Fn( K√
n
) = 0 and consequently, there is a n0 ≥ 1 such that

sup
1≤j≤[nT ]

IP [Vn(tnj−) > dn
j ] < ε (4.25)

for all n ≥ n0. Hence by (4.21), IE[R̄n(T )] ≤ 1
n [nT ]ε ≤ Tε and we conclude that lim

n→∞
IE[R̄n(T )] = 0.

This completes the proof.

Our next step is to show that the term 1√
n

∫ t
0 Fn

(
bVn(s−)√

n

)
dAn(s) in the state equation (4.14)

can be well approximated by
∫ t
0 H(V̂n(s))ds, where H(·) is given in Assumption 3.3.

Lemma 4.5. We have for each T > 0,

sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

∫ t

0
Fn

(
V̂n(s−)√

n

)
dAn(s)−

∫ t

0
H(V̂n(s))ds

∣∣∣∣∣→ 0 in probability as n→∞. (4.26)
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Proof. We recall Ān(t) = 1
nAn(t) and it satisfies (4.6). Hence we can write

1√
n

∫ t

0
Fn

(
V̂n(s−)√

n

)
dAn(s)−

∫ t

0
H(V̂n(s))ds

=
∫ t

0

√
nFn

(
V̂n(s−)√

n

)
(dĀn(s)− ds) +

∫ t

0

(
√
nFn

(
V̂n(s−)√

n

)
−H(V̂n(s))

)
ds. (4.27)

To obtain (4.26), we estimate the right hand side of (4.27) using (4.6) and Assumption 3.3. First
we note that {M̄A

n (t) ≡ Ān(t) −
∫ t
0 λn(Vn(s))ds : t ≥ 0} is a martingale and [M̄A

n ](T ) = 1
nĀn(T ).

By random time change theorem of point processes (see (2.15) and the proof of (4.5)),

Ān(T ) =
1
n
Yn

(
n

∫ T

0
λn(Vn(s))ds

)
≤ 1
n
Yn(nC0T ),

where Yn is a standard Poisson process and C0 > 0 is as in Assumption 3.2(i). Thus, [M̄A
n ](T ) ≤

1
n2Yn(nC0T ) and consequently

dĀn(t)− dt = dM̄A
n (t) + (λn(Vn(t))− 1)dt

and the first term on the right side of (4.27) is equal to

√
n

∫ t

0
Fn

(
V̂n(s−)√

n

)
dM̄A

n (s) +
√
n

∫ t

0
Fn

(
V̂n(s−)√

n

)
(λn(Vn(s))− 1)ds. (4.28)

We consider an arbitrary δ > 0 and have

IP

[
sup

t∈[0,T ]

√
n

∣∣∣∣∣
∫ t

0
Fn

(
V̂n(s−)√

n

)
dM̄A

n (t)

∣∣∣∣∣ > δ

]
≤ n

δ2
IE

[∫ T

0
F 2

n

(
V̂n(s−)√

n

)
d[M̄A

n ](s)

]
≤ n

δ2
IE
[
F 2

n(||Vn||T )[M̄A
n ](T )

]
≤ n

δ2
IE
[
Fn(||Vn||T )[M̄A

n ](T )
]
≤ 1
nδ2

IE [Fn(||Vn||T )Yn(nC0T )]

≤ 1
nδ2

(
IE[F 2

n(||Vn||T )]IE[Y 2
n (nC0T )]

)1/2 ≤ C1T

δ2
(
IE[F 2

n(||Vn||T )]
)1/2

. (4.29)

In the above estimation, we have used 0 ≤ Fn(x) ≤ 1 for all x, Cauchy-Schwarz inequality and
the fact that IE[Y 2

n (nC0T )] ≤ C2
1n

2T 2 for some generic constant C1 > 0 independent of n and T .
Next, we will show IE[F 2

n(||Vn||T )] approaches 0 as n→∞. By Assumption 3.3, there exist n0 and
M1 > 0 such that sup

x∈[0,K]
Fn( x√

n
) < M1√

n
for all n ≥ n0. We consider n > n0 and then

IE
[
F 2

n(||Vn||T )
]

= IE

[
F 2

n(||Vn||T )1[||Vn||T≤ K√
n

]

]
+ IE

[
F 2

n(||Vn||T )1[||Vn||T > K√
n

]

]
≤ M2

1

n
+ IP [

√
n||Vn||T > K].

Now, letting n → ∞ and then K → ∞ and using (4.15), we obtain lim
n→∞

IE[F 2
n(||Vn||T )] = 0.

Consequently, by (4.29), we conclude that

lim
n→∞

IP

[
sup

t∈[0,T ]

√
n

∣∣∣∣∣
∫ t

0
Fn

(
V̂n(s−)√

n

)
dM̄A

n (t)

∣∣∣∣∣ > δ

]
= 0. (4.30)
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Similar to the previous estimation, we obtain

IP

[√
n

∫ T

0
Fn (Vn(s−)) |λn(Vn(s))− 1|ds > δ

]
≤ IP

[√
n

∫ T

0
Fn (Vn(s−)) |λn(Vn(s))− 1|ds > δ,

√
n||Vn||T ≤ K

]
+ IP [

√
n||Vn||T > K]

≤ IP

[
M1

∫ T

0
|λn(Vn(s))− 1|ds > δ

]
+ IP [

√
n||Vn||T > K]. (4.31)

In the derivation of (4.6), we have obtained lim
n→∞

∫ T
0 |λn(Vn(s))− 1|ds = 0 a.s. This together with

(4.15) implies that the right hand side of (4.31) tends to zero as n→∞. This yields

lim
n→∞

IP

[√
n

∫ T

0
Fn (Vn(s−)) |λn(Vn(s))− 1|ds > δ

]
= 0. (4.32)

Consequently, using (4.28), (4.30) and (4.32), we obtain for each T > 0

lim
n→∞

IP

[
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0

√
nFn

(
V̂n(s−)√

n

)
(dĀn(s)− ds)

∣∣∣∣∣ > δ

]
= 0. (4.33)

Finally, we intend to establish

lim
n→∞

IP

[
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0

(
√
nFn

(
V̂n(s−)√

n

)
−H(V̂n(s))

)
ds

∣∣∣∣∣ > δ

]
= 0. (4.34)

Pick ε > 0 so that 0 < ε < δ
T . By Assumption 3.3, we take any K > 0 and then there is a n1 ∈ IN

such that sup
x∈[0,K]

|
√
nFn( x√

n
)−H(x)| < ε for all n ≥ n1. We consider n > n1 and estimate

IP

[∫ T

0

∣∣∣∣∣
(
√
nFn

(
V̂n(s−)√

n

)
−H(V̂n(s))

)∣∣∣∣∣ ds > δ

]

≤ IP

[∫ T

0

∣∣∣∣∣
(
√
nFn

(
V̂n(s−)√

n

)
−H(V̂n(s))

)∣∣∣∣∣ ds > δ,
√
n||Vn||T ≤ K

]
+ IP [

√
n||Vn||T > K]

≤ IP [εT > δ,
√
n||Vn||T ≤ K] + IP [

√
n||Vn||T > K].

Since εT < δ, the first term of the above is 0 for all n > n1. Also, lim
K→∞

lim
n→∞

IP [
√
n||Vn||T > K] = 0.

Hence (4.34) follows. Therefore, (4.33) and (4.34) yield (4.26). This completes the proof.

Our next lemma shows that the term
√
n
∫ t
0 (1−λn(V̂n(s)/

√
n))ds can be well approximated by∫ t

0 u(V̂n(s))ds, where the function u(·) is as given in Assumption 3.2.

Lemma 4.6. We have for each T > 0,∫ T

0

∣∣∣∣∣√n
(

1− λn

(
V̂n(s)√
n

))
− u(V̂n(s))

∣∣∣∣∣ ds→ 0 in probability as n→∞, (4.35)

and consequently,

sup
t∈[0,T ]

∣∣∣∣∣
∫ t

0

[
√
n

(
1− λn

(
V̂n(s)√
n

))
− u(V̂n(s))

]
ds

∣∣∣∣∣→ 0 in probability as n→∞. (4.36)
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Proof. Fix T > 0. Let δ > 0 and pick ε > 0 small so that εT < δ. Let K > 0 be arbitrary. By
Assumption 3.2(iv), there is n0 ≡ n0(K) so that sup

x∈[0,K]
|
√
n(1− λn(x/

√
n))− u(x)| < ε whenever

n ≥ n0. Thus, when n ≥ n0,∫ T

0

∣∣∣∣∣√n
(

1− λn

(
V̂n(s)√
n

))
− u(V̂n(s))

∣∣∣∣∣ ds < εT < δ

on the set [||V̂n||T < K]. Following an estimation similar to that of Lemma 4.5, we can have

lim sup
n→∞

IP

[∫ T

0

∣∣∣∣∣√n
(

1− λn

(
V̂n(s)√
n

))
− u(V̂n(s))

∣∣∣∣∣ ds > δ

]
≤ lim sup

n→∞
IP [||V̂n||T > K].

Hence, using (4.15), desired conclusion (4.35) follows.

The following result is an immediate consequence of Lemmas 4.5 and 4.6. Therefore, we omit the
proof.

Lemma 4.7. For all t ≥ 0, let

εn(t) ≡
∫ t

0

1√
n
Fn

(
V̂n(s−)√

n

)
dAn(s)−

∫ t

0
H(V̂n(s))ds+

∫ t

0

[
√
n

(
1− λn

(
V̂n(s)√
n

))
− u(V̂n(s))

]
ds.

(4.37)
Then for each T > 0, ||εn||T → 0 in probability as n→∞.

To discuss the weak convergence of the process {V̂n(t) : t ≥ 0}, we intend to rewrite the state
equation (4.14) in the following form:

V̂n(t) = ξn(t)− εn(t)−
∫ t

0
u(V̂n(s))ds−

∫ t

0
H(V̂n(s))ds+

√
nIn(t), (4.38)

where
ξn(t) ≡ Ân(t) + M̂v

n(Ān(t))− M̂d
n(Ān(t)), (4.39)

and In(t), εn(t) are given in (3.8), (4.37), respectively.

4.3 Generalized Skorokhod map and weak convergence

Following Section 4 of [26], we introduce the generalized Skorokhod map. Its properties are dis-
cussed in [26] and we refer to them as necessary. Let p : [0,∞) → IR be a continuously differentiable
function with p(0) = 0. Then for a given x in D[0,∞), with x(0) ≥ 0, there exists a pair of functions
(z, `) such that z, ` are also in D[0,∞) and

(i) z(t) = x(t)−
∫ t
0 p(z(u))du+ `(t), z(t) ≥ 0 for all t,

(ii) `(·) is non-decreasing, `(0) = 0, and
∫∞
0 z(t)d`(t) = 0.

The condition p(0) = 0 in [26] can be easily removed by considering p(t)− p(0) instead of p(·) and
then appropriately changing the input x(t) to x(t)+p(0)t, whenever p(0) ≥ 0. We use the notation
in [26] and write

(φp, ψp)(x) = (z, `). (4.40)
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Since (4.38) describes a Skorokhod decomposition, it is easy to observe that

(φp, ψp)(ξn − εn) = (V̂n,
√
nIn), (4.41)

where p(x) = u(x) +H(x) in this case. Since both functions φp and ψp are continuous on D[0,∞),
when the space D[0,∞) is endowed with Skorokhod J1-topology as in Proposition 4.1 of [26], we
can establish the following theorem for weak convergence of the process (V̂n(t))t≥0.

Theorem 4.8. (Diffusion limit) The process (V̂n,
√
nIn) converges weakly to (Z,L) as n → ∞ in

D⊗2[0,∞), where (Z,L) is the unique solution to the reflected stochastic differential equation

Z(t) = σW (t)−
∫ t

0
u(Z(s))ds−

∫ t

0
H(Z(s))ds+ L(t), (4.42)

for all t ≥ 0. Here, W (·) is a standard Brownian motion and σ > 0 is a constant which satisfies
σ2 = 1 + σ2

s . The functions u(·) and H(·) are described in the Assumptions 3.2 and 3.3. The
process Z(·) is non-negative and has continuous sample paths. Here, L(·) is the local-time process
of Z at the origin. The process L(·) is continuous, non-decreasing, L(0) = 0 and satisfies∫ t

0
Z(s)dL(s) = 0. (4.43)

Proof. Recall that the process εn(·) in (4.41) converges to 0 uniformly on compact sets in probability
as shown in Lemma 4.7. We intend to show ξn(·) ⇒ σW (·) in D[0,∞) in the next proposition and
we assume this fact here. Here W is a standard one-dimensional Brownian motion. Our proof of
the next proposition is based on the martingale functional central limit theorem. Hence, by the
continuous mapping theorem, we can conclude ξn − εn weakly converges to σW . Therefore, by the
continuity properties of the mapping (φp, ψp) in (4.41) (see Proposition 4.1 in [26]), we have

(φp, ψp)(ξn − εn) ⇒ (φp, ψp)(σW ) as n→∞.

Since the reflected SDE in (4.42)–(4.43) has a unique pathwise solution, (φp, ψp)(σW ) ≡ (Z,L) and
the proof of the Theorem 4.8 is complete.

It remains to establish the weak convergence of the process (ξn(·))n≥1 to σW (·) in D[0,∞). We
will prove this in Proposition 4.10. We begin with a technical lemma that will be used in the proof.

Lemma 4.9. Let Hn(·) be the process defined by

Ĥn(t) =
1√
n

[
([nt] + 1)− n

∫ tn
[nt]+1

0
λn(Vn(s))ds

]
(4.44)

for all t ≥ 0. Introduce the vector-valued process {M̂n(t) = (Ĥn(t), M̂v
n(t), M̂d

n(t)) : t ≥ 0}, where
the processes Mv

n and Md
n are defined in (3.7). Then the following results hold:

(i) (M̂n(t),Fn
t ) is a mean zero martingale, where the filtration (Fn

t ) is defined in (3.3).

(ii) For each t ≥ 0, the quadratic variation processes have the following limits in probability:

(a) lim
n→∞

[Ĥn, Ĥn](t) = t,

(b) lim
n→∞

[M̂v
n , M̂

v
n ](t) = σ2

s t,
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(c) lim
n→∞

[M̂d
n, M̂

d
n](t) = 0,

(d) lim
n→∞

[Ĥn, M̂
v
n ](t) = lim

n→∞
[Ĥn, M̂

d
n](t) = lim

n→∞
[M̂v

n , M̂
d
n](t) = 0.

In part (b), σ2
s is given by σ2

s = IE(v1 − 1)2.

Proof. We already know M̂v
n and M̂d

n are (Fn
t )-martingales from the discussion after (2.4) and (2.5).

To prove part (i), it remains to show that Ĥn is also an (Fn
t )-martingale. Since Ĥn(·) has piecewise

constant paths with possible jumps at the times k
n , we consider

Hn(i) =
1√
n

[
(i+ 1)− n

∫ tni+1

0
λn(Vn(s))ds

]
(4.45)

for i = 0, 1, 2, . . .. Notice that Ĥn(t) = Hn([nt]) for all t ≥ 0 and Hn is adapted to the filtration
(F̂n

i )i≥0 defined in (3.2). We show that (Hn(i), F̂n
i ) is a martingale and from this, it follows that

(Ĥn(t),Fn
t ) also is a martingale. Following (2.10), we introduce two filtrations (Gn

t )t≥0 and (G̃n
t )t≥0

by
Gn

t ≡ σ(An(s), Vn(s) : 0 ≤ s ≤ t), G̃n
t ≡ Gn

t ∨ G̃n
0 , for all t ≥ 0, (4.46)

where G̃n
0 ≡ σ((vn

i , d
n
i ) : i = 1, 2, . . .). Here, G̃n

t is the σ-algebra generated by the sets in Gn
t ∪ G̃n

0 .
For each i, the jump time tni of the process An(·) is clearly a (G̃n

t )-stopping time and IE[tni ] is also
finite as in (4.23). Thus the filtration (G̃n

tni
)i≥1 is well defined. Since Ân(t) is a (G̃n

t )-martingale as
observed in (2.13), we have

IE[Ân(tni+2)|G̃n
tni+1

] = Ân(tni+1) for each i = 0, 1, 2, . . . . (4.47)

Next, we observe that Ân(tni+1) = Hn(i) and F̂n
i ⊆ G̃n

tni+1
for each i = 0, 1, 2, . . .. By conditioning

both sides of (4.47) with respect to F̂n
i , we obtain that (Hn(i), F̂n

i ) is a martingale. This completes
the proof of part (i).

For part (ii), first notice that Ĥn can be written as

Ĥn(t) =
1√
n

[nt]∑
j=0

(
1−

∫ tnj+1

tnj

nλn(Vn(s))ds

)
(4.48)

for all t ≥ 0, where tn0 ≡ 0. Recall that using (2.15), we can write An(t) = Yn(
∫ t
0 nλn(Vn(s))ds) for

all t ≥ 0, where Yn is a standard Poisson process. Let (enj )j≥1 be the sequence of jump times of
Yn and define the sequence (ηn

j )j≥1 by ηn
1 ≡ en1 and ηn

j ≡ enj − enj−1 for all j ≥ 2. Then (ηn
j ) is an

i.i.d. sequence of exponential random variables with parameter 1. With the above representation,∫ tnj
0 nλn(Vn(s))ds = enj and hence Ĥn can be written as

Ĥn(t) =
1√
n

[nt]∑
j=0

(1− ηn
j ). (4.49)

Therefore,

[Ĥn, Ĥn](t) =
1
n

[nt]∑
j=0

(1− ηn
j )2. (4.50)
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Let (η̃j) be a generic i.i.d. sequence of exponential random variables with parameter 1. Then for
each ε > 0, IP [|[Ĥn, Ĥn](t) − t| < ε] = IP [| 1n

∑[nt]
j=0(1 − η̃j)2 − t| < ε] and by strong law of large

numbers, lim
n→∞

1
n

∑[nt]
j=0(1 − η̃j)2 = t a.s. Consequently, for each t ≥ 0, lim

n→∞
[Ĥn, Ĥn](t) = t in

probability.
Next, we consider [M̂v

n , M̂
v
n ](t). Using (3.7), we obtain

[M̂v
n , M̂

v
n ](t) =

1
n

[nt]∑
j=1

(vj − 1)21[Vn(tnj −)<dn
j ].

Let Sn(t) = 1
n

∑[nt]
j=1(vj − 1)2. Then |Sn(t)− [M̂v

n , M̂
v
n ](t)| = 1

n

∑[nt]
j=1(vj − 1)21[Vn(tnj −)≥dn

j ]. Since vj

is independent of σ(F̂n
j−1 ∪{dn

j }) and 1[Vn(tnj −)≥dn
j ] is measurable with respect to this σ-algebra, we

have IE[(vj − 1)21[Vn(tnj −)≥dn
j ]|σ(F̂n

j−1 ∪{dn
j })] = σ2

s1[Vn(tnj −)≥dn
j ]. Taking the expected value in both

sides, we have IE[(vj − 1)21[Vn(tnj −)≥dn
j ]] = σ2

sIE[1[Vn(tnj −)≥dn
j ]]. Consequently,

IE|Sn(t)− [M̂v
n , M̂

v
n ](t)| = σ2

s

n
IE[

[nt]∑
j=1

1[Vn(tnj −)≥dn
j ]] = σ2

sIE[R̄n(t)],

where R̄n(t) is given in (4.21). By Lemma 4.4, we have lim
n→∞

IE[R̄n(t)] = 0 and thus

lim
n→∞

IE|Sn(t)−[M̂v
n , M̂

v
n ](t)| = 0. On the other hand, (vj) is an i.i.d. sequence with IE(vj−1)2 = σ2

s .

Therefore, by strong law of large numbers, lim
n→∞

Sn(t) = σ2
s t a.s. Using these two facts, we can

conclude lim
n→∞

[M̂v
n , M̂

v
n ](t) = σ2

s t in probability for each t > 0.

Using (3.7), we have

IE([M̂d
n, M̂

d
n](t)) =

1
n
IE

[nt]∑
j=1

(
1[Vn(tnj −)≥dn

j ] − IE(1[Vn(tnj −)≥dn
j ]|F̂n

j−1)
)2
.

Since IE(1[Vn(tnj −)≥dn
j ]|F̂n

j−1) ≤ 1, we obtain

IE
(
1[Vn(tnj −)≥dn

j ] − IE(1[Vn(tnj −)≥dn
j ]|F̂n

j−1)
)2
≤ 2IE[1[Vn(tnj −)≥dn

j ]].

Therefore, IE([M̂d
n, M̂

d
n](t)) ≤ 2IE[R̄n(t)], where R̄n(t) is given in (4.21). Using (4.22), we have

lim
n→∞

IE([M̂d
n, M̂

d
n](t)) = 0 and thus lim

n→∞
[M̂d

n, M̂
d
n](t) = 0 in probability for each t > 0.

Similar to the above computations, we have

[M̂v
n , M̂

d
n](t) = − 1

n

[nt]∑
j=1

(vj − 1)1[Vn(tnj −)<dn
j ]IE(1[Vn(tnj −)≥dn

j ]|F̂n
j−1).

But Vn(tnj−) and dn
j are measurable in σ(F̂n

j−1∪{dn
j }) and vj −1 is independent of σ(F̂n

j−1∪{dn
j }).

Also, IE|vj − 1| ≤
√
IE(vj − 1)2 = σs. Hence we can easily obtain

IE|[M̂v
n , M̂

d
n](t)| ≤ σsIE[R̄n(t)] → 0 as n→∞
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by (4.22). Thus, lim
n→∞

[M̂v
n , M̂

d
n](t) = 0 in probability for each t > 0.

From (4.48) and (3.7), we obtain

[Ĥn, M̂
v
n ](t) =

1
n

[nt]∑
j=1

(vj − 1)1[Vn(tnj −)<dn
j ]

(
1−

∫ tnj+1

tnj

nλn(Vn(s))ds

)
. (4.51)

Let Yn(t) = [Ĥn, M̂
v
n ](t). We claim that (Yn(t),Fn

t ) is a martingale. Clearly, {Yn(t)} is adapted
to (Fn

t ). Using the notation in (4.49), we can write

(vj − 1)1[Vn(tnj −)<dn
j ]

(
1−

∫ tnj+1

tnj

nλn(Vn(s))ds

)
= (vj − 1)(1− ηn

j )1[Vn(tnj −)<dn
j ].

This term is integrable since IE(vj − 1)2 = σ2
s < ∞ and IE(1 − ηn

j )2 = 1. This term is also
equal to

√
n(vj − 1)1[Vn(tnj −)<dn

j ](Ân(tnj+1) − Ân(tnj )). Using the fact that vj , Vn(tnj−) and dn
j are

G̃n
tnj

-measurable and by (4.47), we see that

IE

[
(vj − 1)1[Vn(tnj −)<dn

j ]

(
1−

∫ tnj+1

tnj

nλn(Vn(s))ds

)∣∣∣G̃n
tnj

]
= 0.

But F̂n
j−1 ⊆ G̃n

tnj
and therefore by conditioning on F̂n

j−1, we have {Yn(t)} is an (Fn
t )-martingale.

Consequently,

IE([Yn,Yn](t)) ≤ 1
n

[nt]∑
j=1

IE
[
(vj − 1)2(Ân(tnj+1)− Ân(tnj ))2

]
.

Since (Ân(t), G̃n
t ) is a martingale (recall (2.13)) and [Ân, Ân](t) = 1

nAn(t), we have IE[(Ân(tnj+1)−
Ân(tnj ))2|G̃n

tnj
] = 1

n . Also, (vj − 1) is G̃n
tnj

-measurable, and hence

IE
[
(vj − 1)2(Ân(tnj+1)− Ân(tnj ))2

∣∣G̃n
tnj

]
=

1
n

(vj − 1)2.

Consequently, IE[(vj − 1)2(Ân(tnj+1)− Ân(tnj ))2] = σ2
s/n and we deduce that

IE([Yn,Yn](t)) ≤ σ2
s [nt]
n2

→ 0 as n→∞.

Therefore, Yn(t) = [Ĥn, M̂
v
n ](t) → 0 in probability. The proof of lim

n→∞
[Ĥn, M̂

d
n](t) → 0 in probability

is similar to that of the previous result and therefore we omit it. This completes the proof of part
(ii) of lemma.

Proposition 4.10. Let ξn be defined by (4.39). Then the process ξn(·) converges weakly to σW (·)
in D[0,∞) as n → ∞, where W (·) is a standard Brownian motion and σ > 0 is a constant given
by σ2 = 1 + σ2

s . Here, σ2
s = IE(v1 − 1)2 is a constant as in Assumption 3.1.

Proof. We consider the vector-valued process {(Ân(t), M̂v
n(Ān(t)), M̂d

n(Ān(t))) : t ≥ 0}, where
Ān(t) = 1

nAn(t) for all t ≥ 0. We intend to show that this process converges weakly to (W1, σsW2, 0)
in D⊗3[0,∞), where W1 and W2 are independent standard Brownian motions. If we can write
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Ân(t) = H̃n(Ān(t)) for some process H̃n and if we can establish the weak convergence of (H̃n, M̂
v
n , M̂

d
n)

to (W1, σsW2, 0), then we can use the almost sure limit of Ān(t) in (4.6) together with the random
time change theorem (cf. Section 14 of [7]) to obtain the desired conclusion. Unfortunately, the
representation Ân(t) = H̃n(Ān(t)) for all t ≥ 0 is not possible, and we need some adjustments to
this idea in our proof. Another point is that Ân is a martingale with respect to (Gn

t ) as well as
(G̃n

t ) filtrations defined in (4.46), while M̂v
n and M̂d

n are martingales with respect to (Fn
t ) filtration

in (3.3).
To overcome those difficulties, we observe two facts. First, consider process Ĥn defined in (4.44).

Then
Ĥn(Ān(t)) = Ân(tnk+1) if tnk ≤ t < tnk+1. (4.52)

Second, the vector-valued process M̂n(t) = (Ĥn(t), M̂v
n(t), M̂d

n(t)) for t ≥ 0 is an (Fn
t )-martingale

by part (i) of Lemma 4.9. Our approach here is to use the martingale functional central limit
theorem (cf. Theorem 1.4, Chapter 7 in [13] or Theorem 2.1 in [34]) to establish the weak con-
vergence of M̂n to (W1, σsW2, 0) and then to apply random time change theorem (cf. Section 14
of [7]) to conclude M̂n(Ān(t)) also converges to (W1, σsW2, 0). Finally, we establish that for each
T > 0, sup

t∈[0,T ]
|Ân(t) − Ĥ(Ān(t))| converges to zero in probability. Then as a consequence of this,

(Ân(·), M̂v
n(Ān(·)), M̂d

n(Ān(·))) converges weakly to (W1, σsW2, 0) in D⊗3[0,∞).
To implement the sketch of the proof given above, we consider the vector-valued martingale

(M̂n(t),Fn
t ) and apply the martingale FCLT, Theorem 1.4 of Chapter 7 in [13]. We intend to verify

the assumption in the quoted Theorem 1.4, part a). First, we show that for each T > 0,

lim
n→∞

IE

(
sup

t∈[0,T ]
|M̂n(t)− M̂n(t−)|

)
= 0.

Using the representation (4.49) for Ĥn, we can write

IE

[
sup

t∈[0,T ]
|Ĥn(t)− Ĥn(t−)|

]
= IE

(
1√
n

max
1≤j≤nT

|1− ηn
j |
)
≤
[

1
n
IE

(
max

1≤j≤nT
|1− ηn

j |2
)]1/2

,

where (ηn
j ) is an i.i.d. sequence of random variables with exp(1) distribution. If (η̃j) is a generic

i.i.d. sequence of exp(1) random variables, then 1
nIE( max

1≤j≤nT
|1− ηn

j |2) = 1
nIE( max

1≤j≤nT
|1− η̃j |2) and

since IE(1− η̃j)2 = 1, by (A1) (see the Appendix), we have

lim
n→∞

1
n
IE

(
max

1≤j≤nT
|1− η̃j |2

)
= 0.

Hence lim
n→∞

IE[ sup
t∈[0,T ]

|Ĥn(t)− Ĥn(t−)|] = 0. Similarly,

IE

[
sup

t∈[0,T ]
|M̂v

n(t)− M̂v
n(t−)|

]
≤ IE

(
1√
n

max
1≤j≤nT

|vj − 1|
)
≤
[

1
n
IE

(
max

1≤j≤nT
|vj − 1|2

)]1/2

.

Since (vj) is i.i.d. and IE(vj − 1)2 = σ2
s <∞, again by (A1), lim

n→∞
1
nIE( max

1≤j≤nT
|vj − 1|2) = 0.

In part (ii) of Lemma 4.9, we have established lim
n→∞

[M̂ i
n, M̂

j
n](t) = cijt in probability for 1 ≤

i, j ≤ 3 where [M̂ i
n, M̂

j
n] represents the (i, j)-th quadratic-covariation process of the martingale M̂n
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(see Remark 1.5 in page 340 of [13]) and the constant matrix C = (cij)3×3 is described by the
diagonal matrix C = diag(1, σ2

s , 0). Hence, the assumptions of the martingale FCLT, Theorem 1.4,
part a) in pages 339–340 of [13] are satisfied. Thus, we can conclude that M̂n converges weakly to
(W1, σsW2, 0) as n→∞, where W1 and W2 are independent standard Brownian motions. By (4.6),
sup

t∈[0,T ]
|Ān(t) − t| → 0 as n → ∞ for each T > 0, and hence by the random time change theorem

(Section 14, [7]), M̂n ◦ Ān also converges weakly to (W1, σsW2, 0) in D⊗3[0,∞) as n→∞.

Now, to establish the weak convergence of the process (Ân(t), M̂v
n(Ān(t)), M̂d

n(Ān(t))) it remains
to estimate sup

t∈[0,T ]
|Ĥn(Ān(t))− Ân(t)| for each T > 0. Let ε > 0. Notice that

IP

[
sup

t∈[0,T ]

∣∣∣Ĥn(Ān(t))− Ân(t)
∣∣∣ > ε

]
≤ IP

[
sup

t∈[0,T ]

∣∣∣Ĥn(Ān(t))− Ân(t)
∣∣∣ > ε, Ān(T ) ≤ 2T

]
+IP

[
Ān(T ) > 2T

]
. (4.53)

On the set [Ān(T ) ≤ 2T ], using (4.52), we have

sup
t∈[0,T ]

∣∣∣Ĥn(Ān(t))− Ân(t)
∣∣∣ = sup

0≤j≤[2nT ]
sup

tnj ≤t<tnj+1

∣∣∣Ân(tnj+1)− Ân(t)
∣∣∣ .

But using the i.i.d. sequence of exp(1) random variables (ηn
j ) introduced in the discussion above

(4.49), we have

sup
tnj ≤t<tnj+1

∣∣∣Ân(tnj+1)− Ân(t)
∣∣∣ ≤ 1√

n

(
1 +

∫ tnj+1

tnj

nλn(Vn(s))ds

)
=

1√
n

(1 + ηn
j+1).

Therefore,

IP

[
sup

t∈[0,T ]

∣∣∣Ĥn(Ān(t))− Ân(t)
∣∣∣ > ε, Ān(T ) ≤ 2T

]
≤ IP

[
sup

0≤j≤[2nT ]

1√
n

(1 + ηn
j+1) > ε

]

= IP

[
sup

0≤j≤[2nT ]

1√
n

(1 + η̃j+1) > ε

]
,(4.54)

where (η̃j) is a generic sequence of i.i.d. exp(1) random variables. Since IE(1 + η̃j+1)2 < ∞, by
(A1) (see the Appendix),

lim
n→∞

1
n
IE

[
sup

0≤j≤[2nT ]
(1 + η̃j+1)2

]
= 0.

Hence, the right hand side of (4.54) tends to zero and consequently, the first term on the right side
of (4.53) converges to zero as n tends to infinity. On the other hand, Ān(T ) converges to T almost
surely, and hence the second term on the right side of (4.53) also converges to zero as n → ∞.
Using these two limits in (4.53), we obtain

lim
n→∞

IP

[
sup

t∈[0,T ]

∣∣∣Ĥn(Ān(t))− Ân(t)
∣∣∣ > ε

]
= 0 for each T > 0.

We can combine this result with the already established weak convergence of
(Ĥn(Ān(t)), M̂v

n(Ān(t)), M̂d
n(Ān(t))) to (W1, σsW2, 0) as n→∞ to obtain that the process

(Ân(t), M̂v
n(Ān(t)), M̂d

n(Ān(t))) converges weakly to (W1, σsW2, 0) in D⊗3[0,∞) as n→∞. There-
fore, the process ξn(·) defined in (4.39) converges weakly to σW (·) in D[0,∞) as n → ∞, where
W (·) is a standard one-dimensional Brownian motion and σ2 = 1+σ2

s . This completes the proof.
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5 Scaled Queue Length

Here we establish an asymptotic relationship between the queue-length and offered waiting time
processes under heavy traffic conditions. We essentially follow the proof of this fact in Reed and
Ward [26] (Theorem 6.1) and supplement it with necessary estimates to accommodate our general
assumptions. For a conventional GI/GI/1 queue, this fact was established in Theorem 4 of Section
3 in Reiman [27]. We circumvent the use of Reiman’s “Snap-shot Principle” and a comparison
result with a non-abandoning queue used in Reed and Ward [26] by obtaining different estimates.

For t ≥ 0, let Qn(t) be the queue length of the n-th system at time t and Q̂n(t) = Qn(t)√
n

be the
diffusion-scaled queue length. Following the notation in [26], we also introduce the random variable

an(t) ≡ the arrival time of the customer in service at time t in the n-th system.

If the server is idle at time t, we let an(t) = t.

Theorem 5.1. Let Q̂n and V̂n be scaled queue-length and scaled offered waiting time processes,
respectively. Then as n→∞,

Q̂n − V̂n ⇒ 0

in D[0,∞).

To prove this theorem, we follow the discussion in page 21 of [26] with appropriate changes and
then establish two lemmas. Recall that for the j-th arrival in the n-th system, service time is vj/n.
First, notice that Vn(an(t)−) ≤ t− an(t) ≤ Vn(an(t)−) + 1

nvAn(an(t)) and hence

V̂n(an(t)−) ≤
√
n(t− an(t)) ≤ V̂n(an(t)−) +

1√
n
vAn(an(t)) (5.1)

for all t ≥ 0. For T ≥ 0, let un(T ) = max{vj : 1 ≤ j ≤ An(T )}. Then we observe that for each
T ≥ 0, un(T )/

√
n⇒ 0 as n→∞. Indeed, for an arbitrary ε > 0,

IP

[
1√
n
un(T ) > ε

]
≤ IP

[
1√
n
un(T ) > ε, Ān(T ) < 2T

]
+ IP [Ān(T ) ≥ 2T ].

We know from (4.6) that lim
n→∞

IP [Ān(T ) ≥ 2T ] = 0. Also, note that

IP

[
1√
n
un(T ) > ε, Ān(T ) < 2T

]
≤ IP

[
1√
n

max
1≤j≤2nT

vj > ε

]

and lim
n→∞

IP

[
1√
n

max
1≤j≤2nT

vj > ε

]
= 0 follows from (A1) in the Appendix or Lemma 3.3 of [18].

Thus, we have

lim
n→∞

IP

[
1√
n
un(T ) > ε

]
= 0. (5.2)

Notice that for n ≥ 1 and 0 ≤ t ≤ T , we have 0 ≤ vAn(an(t)) ≤ un(T ) and this together with (5.2)
implies that

sup
t∈[0,T ]

|
√
n(t− an(t))− V̂n(an(t)−)| ⇒ 0

as n→∞. Dividing by
√
n, and using Theorem 4.1, we deduce that

sup
t∈[0,T ]

(t− an(t)) ⇒ 0 (5.3)
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as n→∞.
The next two technical lemmas enable us to prove Theorem 5.1 and we use the above facts in

their proofs. Our Lemma 5.2 corresponds to Lemma 6.1 of [26] but the proof requires a different
estimate to accommodate our general assumptions.

Lemma 5.2. For each T > 0,

sup
t∈[0,T ]

1√
n

An(t)∑
j=An(an(t))

1[Vn(tnj −)≥dn
j ] ⇒ 0 as n→∞.

Proof. We begin with the following identity: for t ≥ 0

1√
n

An(t)∑
j=An(an(t))

1[Vn(tnj −)≥dn
j ] = M̂d

n(Ān(t))− M̂d
n(Ān(an(t))) +

1√
n

An(t)∑
j=An(an(t))

Fn(Vn(tnj−)), (5.4)

where M̂d
n(t) is described in (3.7) (see also (2.6)). By Proposition 4.10, M̂d

n ⇒ 0 as n → ∞ and
by (4.6), sup

t∈[0,T ]
|Ān(t)− t| → 0 as n→∞. Using these facts together with (5.3) and then applying

random-time change theorem in [7], we can conclude

M̂d
n(Ān(·))− M̂d

n ◦ Ān ◦ an(·) ⇒ 0 (5.5)

in D[0,∞) as n→∞. Next, we show

1√
n

An(·)∑
j=An(an(·))

Fn(Vn(tnj−)) ⇒ 0

as n→∞ and hence by (5.4) this will imply the stated result. For t ≥ 0, let

Wn(t) =
1√
n

sup
t∈[0,T ]

An(t)∑
j=An(an(t))

Fn(Vn(tnj−))

and ε, ε̃ > 0 be arbitrary. Choose K > 0 large enough then, by (4.24), there is n0 ∈ IN so that

IP

[
max

1≤j≤[nT ]
V̂n(tnj−) ≥ K

]
< ε̃

for all n ≥ n0. Using the fact that Fn(·) is non-decreasing, we obtain

IP [Wn(T ) > ε] ≤ IP

[
Wn(T ) > ε, max

1≤j≤[nT ]
V̂n(tnj−) ≤ K

]
+ ε̃

≤ IP

[
1√
n
Fn

(
K√
n

)
sup

t∈[0,T ]
(An(t)−An(an(t))) > ε

]
+ ε̃, (5.6)

for all n ≥ n0. We take δ1 > 0. Then by the Assumption 3.3, there is n1 ∈ IN such that√
nFn( K√

n
) ≤ H(K) + δ1 for all n ≥ n1. We let the constant C1 ≡ H(K) + δ1 > 0. Then for all

n ≥ max{n0, n1}, 1√
n
Fn(K/

√
n) ≤ C1/n and thus

IP

[
1√
n
Fn

(
K√
n

)
sup

t∈[0,T ]
(An(t)−An(an(t))) > ε

]
≤ IP

[
sup

t∈[0,T ]
(Ān(t)− Ān(an(t))) >

ε

C1

]
. (5.7)
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But since an(t) ≤ t, we have

2 sup
t∈[0,T ]

|Ān(t)− t|+ sup
t∈[0,T ]

|t− an(t)| ≥ sup
t∈[0,T ]

[Ān(t)− Ān(an(t))].

Hence by (4.6) and (5.3), it follows that

lim
n→∞

IP

[
1√
n
Fn

(
K√
n

)
sup

t∈[0,T ]
(An(t)−An(an(t))) > ε

]
= 0

and using this in (5.6), we have lim
n→∞

IP [Wn(T ) > ε] = 0. Using this together with (5.5) in the

identity (5.4), we obtain the desired conclusion.

Lemma 5.3. Let T ≥ 0. As n→∞,

√
n sup

t∈[0,T ]

∫ t

an(t)

∣∣∣∣∣λn

(
V̂n(s)√
n

)
− 1

∣∣∣∣∣ ds⇒ 0. (5.8)

Proof. Let ε > 0 be arbitrary. We pick K > 0 large enough then, by (4.15), there is n0 ∈ IN so
that

IP [||V̂n||T > K] < ε/2

for all n ≥ n0. Let δ > 0. Using part (iv) of Assumption 3.2, there is n1 ∈ IN so that√
n sup

x∈[0,K]
|λ(x/

√
n) − 1| ≤ max

x∈[0,K]
u(x) + δ for all n ≥ n1. We let C = max

x∈[0,K]
u(x) + δ > 0

and for n ≥ 1, introduce Wn(T ) =
√
n sup

t∈[0,T ]

∫ t
an(t)

∣∣∣λn

(
bVn(s)√

n

)
− 1
∣∣∣ ds. Then, we have

IP [Wn(T ) > ε] ≤ IP
[
Wn(T ) > ε, ||V̂n||T ≤ K

]
+
ε

2

≤ IP

[
C sup

t∈[0,T ]
(t− an(t)) > ε

]
+
ε

2
,

for all n ≥ max{n0, n1}. Using this together with (5.3), we obtain lim
n→∞

IP [Wn(T ) > ε] = 0 and this

yields (5.8).

Next, we use Lemmas 5.2 and 5.3 to prove Theorem 5.1.

Proof of Theorem 5.1. We begin with the estimate

An(t)−An(an(t))−
An(t)∑

j=An(an(t))

1[Vn(tnj −)≥dn
j ] ≤ Qn(t) ≤ An(t)−An(an(t)) + 1

as explained in the proof of Theorem 6.1 in [26]. For n ≥ 1 and t ≥ 0, let

Yn(t) = Ân(t)− Ân(an(t)) +
√
n

∫ t

an(t)
λn

(
V̂n(s)√
n

)
ds,

where Ân(·) is described in (3.5). Then,

Yn(t)− 1√
n

An(t)∑
j=An(an(t))

1[Vn(tnj −)≥dn
j ] ≤ Q̂n(t) ≤ Yn(t) +

1√
n
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for all t ≥ 0. Hence we can write

Yn(t)− 1√
n

An(t)∑
j=An(an(t))

1[Vn(tnj −)≥dn
j ] − V̂n(an(t)) + [V̂n(an(t))− V̂n(t)]

≤ Q̂n(t)− V̂n(t) ≤ Yn(t) +
1√
n
− V̂n(an(t)) + [V̂n(an(t))− V̂n(t)].

Next, we introduce Zn(·) by

Zn(t) = Ân(t)− Ân(an(t)) +
√
n

∫ t

an(t)

[
λn

(
V̂n(s)√
n

)
− 1

]
ds,

for all t ≥ 0. Then we can employ the estimates for V̂n(an(t)) in (5.1) and obtain,

Zn(t)− 1√
n

An(t)∑
j=An(an(t))

1[Vn(tnj −)≥dn
j ] + [V̂n(an(t))− V̂n(t)]

≤ Q̂n(t)− V̂n(t) ≤ Zn(t) +
1√
n
vAn(an(t)) + [V̂n(an(t))− V̂n(t)] +

1√
n
.

Consequently,

|Q̂n(t)− V̂n(t)| ≤ |Zn(t)|+ 1√
n

An(t)∑
j=An(an(t))

1[Vn(tnj −)≥dn
j ]

+|V̂n(an(t))− V̂n(t)|+ 1√
n
vAn(an(t)) +

1√
n
. (5.9)

Since Ân ⇒ W1 as n → ∞, and by (5.3), we have |Ân(·) − Ân ◦ an(·)| ⇒ 0 as n → ∞. We use
this fact together with Lemma 5.3 to conclude |Zn(·)| ⇒ 0 as n → ∞. Similarly, V̂n(·) converges
weakly as in Theorem 4.8. This together with (5.3) yields |V̂n ◦ an(·) − V̂n(·)| ⇒ 0 as n → ∞.
Finally, notice that 0 ≤ 1√

n
vAn(an(t)) ≤

un(T )√
n

, where un(T ) is as in (5.2), and hence by (5.2), we
deduce that vAn(an(·))/

√
n ⇒ 0 as n → ∞. Using all these facts in (5.9), we are able to conclude

Q̂n(·)− V̂n(·) ⇒ 0 as n→∞. This completes the proof.

As a consequence of Theorem 4.8, we have the following corollary.

Corollary 5.4. The scaled queue-length process (Q̂n(t))t≥0 also converges weakly as n→∞ to the
diffusion process (Z(t))t≥0 of (4.42) in D[0,∞).

6 Convergence of Cost Functionals

6.1 Introduction

Here we introduce an infinite horizon discounted cost functional associated with the n-th system
described in (3.8). Our goal is to show that the expected value of this cost functional converges to the
expected value of the same cost functional associated with the limiting diffusion process described
in (4.42). For heavy traffic limits related to scaled queue-length processes, such convergence of cost
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functionals are obtained in [5, 32, 19] and they are very useful in controlled queueing systems to
obtain an asymptotically optimal arrival rate λn(·). First we introduce the scaled idle time process
L̂n(·) associated with (3.8) by

L̂n(t) =
√
nIn(t) for all t ≥ 0. (6.1)

Then, after scaling we can rewrite (3.8) as

V̂n(t) +
1√
n

∫ t

0
Fn

(
V̂n(s−)√

n

)
dAn(s) = Ân(t) + M̂v

n(Ān(t))− M̂d
n(Ān(t)) (6.2)

+
√
n

∫ t

0

[
λn

(
V̂n(s)√
n

)
− 1

]
ds+ L̂n(t),

for all t ≥ 0.
Let γ > 0 be a discount factor and C(·) be a running cost function of polynomial growth. For

the n-th system described in (6.2), we introduce two types of costs: A cost of
∫∞
0 e−γtC(V̂n(t))dt

related to the waiting times and an idleness cost proportional to
∫∞
0 e−γtdL̂n(t). Thus the infinite

horizon discounted cost functional associated with the n-th system is given by

J(V̂n, L̂n) ≡ IE

∫ ∞

0
e−γt

[
C(V̂n(t))dt+ p · dL̂n(t)

]
, (6.3)

where p > 0 and γ > 0 are fixed constants. The cost functional related to the limiting diffusion in
(4.42) is given by

J(Z,L) ≡ IE

∫ ∞

0
e−γt [C(Z(t))dt+ p · dL(t)] . (6.4)

Under our assumptions, we intend to show that these cost functionals in (6.3) and (6.4) are finite.
Our main result here is the convergence of J(V̂n, L̂n) to J(Z,L) as n tends to infinity.

6.2 Assumptions and the convergence of the cost functionals

We need to make further assumptions in this section. We assume that the running cost function
C(·) can have polynomial growth and the service times (vi) have higher moments. We also need to
strengthen the part (iii) of Assumption 3.2. All these assumptions will be used in the proof of main
theorem (Theorem 6.2) here, but Theorem 6.4, which is of independent interest remains valid only
with the assumption (6.6) below. We will make it clear in the statements of these results. Next,
we list the additional assumptions below:

(a) There are constant K1 > 0 and integer ` ≥ 1 such that

0 ≤ C(x) ≤ K1(1 + x`), for all x ≥ 0. (6.5)

Here C(·) is the running cost function in (6.3).

(b) The sequence of service times (vi) described in Section 3 satisfies

IE[vm(1+ε)
i ] <∞ for some integer m > max{`, 2}, and small ε > 0. (6.6)

(c) The arrival sequence of intensity functions (λn(·)) satisfies the following two conditions:
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(i) There exist two constants δ0 > 0 and M > 0 such that

sup
n≥1

sup
x∈[0,δ0]

√
n|λn(x)− 1| < M. (6.7)

(ii) There exist two constants A > 0 and B > 0 such that

sup
n≥1

√
n(λn(x)− 1)+ ≤ A+Bx for all x ≥ 0. (6.8)

(d) We also assume that the sequence of (Fn) of distribution function of abandonments satisfies

0 ≤
√
nFn

(
x√
n

)
≤ C1x(1 + xr), for all x ≥ 0, (6.9)

where C1 > 0 is a generic constant independent of n and the constant r > 0 satisfies
2(r + 1) < m.

Since
√
n(1− λn(x/

√
n)) converges to a non-negative function u(x) for all x ≥ 0 (Assumption 3.2,

part (iv)), conditions (6.7) and (6.8) are not very restrictive. (See also the examples in Remark
3.4.) Assumptions (6.6) and (6.9) will be used in obtaining some uniform integrability estimates
for the integrand in the cost functional J(V̂n, L̂n).

Remark 6.1. The assumption (6.9) indeed imposes some restrictions on the Assumption 3.3 of
Section 3. Here we follow up on the changes required in the examples (Fn) provided in Remark 3.4.

(a) Let Fn ≡ F for all n, and assume F is differentiable with a derivative of polynomial growth
satisfying

sup
y∈[0,x]

F ′(y) ≤ C(1 + xr) with 0 ≤ r < m− 1,

where F ′(y) denotes a derivative of F at y. Then (Fn) satisfies Assumption 3.3 as well as
(6.9).

(b) Take Fn(x) = 1− exp(−
∫ x
0 h(

√
nu)du) for x ≥ 0 and assume that h is a continuous function

with polynomial growth satisfying sup
y∈[0,x]

h(y) ≤ C(1 + xr) with 0 ≤ r < m− 1. This sequence

(Fn) also satisfies Assumption 3.3 as well as (6.9).

(c) For a general sequence (Fn), assume that F ′n( x√
n
) converges to a non-negative function h(x)

uniformly on compact sets and F ′n( x√
n
) ≤ C(1 + xr), where C > 0 is a constant independent

of n. Then, (Fn) satisfies Assumption 3.3 as well as (6.9).

Our main theorem in this section is the following:

Theorem 6.2. In addition to the basic assumptions in Section 3, assume (6.5)–(6.9) to hold. Then
the cost functionals J(V̂n, L̂n) and J(Z,L) are all finite and

lim
n→∞

J(V̂n, L̂n) = J(Z,L). (6.10)

Proof of this theorem needs several preliminary results. Using Theorem 4.8, together with Sko-
rokhod’s representation theorem, we can simply assume that lim

n→∞
(V̂n(t), L̂n(t)) = (Z(t), L(t)) for

all t ≥ 0, a.s. To obtain the convergence of cost functionals, we need to obtain a polynomial growth
bound which is independent of n for the expected value of the integrand in J(V̂n, L̂n).
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Lemma 6.3. Assume (6.6) in addition to the basic assumptions in Section 3. Let ξn(·) be the
process described in (4.39). Then,

IE [||ξn||mT ] ≤ K2(1 + Tm/2), (6.11)

where K2 > 0 is a generic constant independent of n.

Proof. In (4.39), we let ξn(t) = Ân(t) + M̂v
n(Ān(t)) − M̂d

n(Ān(t)) for all t ≥ 0. First, we estimate
IE[||Ân||mT ]. By (2.15), An has the representation An(t) = Yn(n

∫ t
0 λn(Vn(s))ds) for all t ≥ 0, where

Yn is a standard Poisson process. We introduce the Poisson martingale Ŷn(t) = 1√
n
(Yn(nt) −

nt) and then we can write Ân(t) = Ŷn(
∫ t
0 λn(Vn(s))ds) as in (2.15). Moreover, for any integer

k ≥ 1, ||Ân||2k
T ≤ ||Ŷn||2k

C0T , where the constant C0 > 0 is as in Assumption 3.2. Consequently,
IE[||Ân||2k

T ] ≤ IE[||Ŷn||2k
C0T ].

The quadratic variation process of the martingale Ŷn is given by [Ŷn, Ŷn](t) = 1
nYn(nt) and

therefore, using Burkholder’s inequality (cf. [24]) we obtain IE[||Ŷn||2k
C0T ] ≤ Ck

nk IE[Yn(nC0T )k] where
Ck > 0 is a constant depending only on k. Recall that if X is a Poisson random variable with
parameter λ > 0, then for any integer j ≥ 1, IE[X(X − 1) · · · (X − (j − 1))] = λj . Consequently,
IE(Xj) = pj(λ), where pj(x) is a degree j polynomial of the form pj(x) = xj + cj−1x

j−1 + · · ·+ c1x
and the constants c1, c2, . . . , cj−1 may depend on j. Since Yn(nC0T ) is a Poisson random variable
with parameter nC0T > 0, we can easily obtain the bound 1

nk IE[Yn(nC0T )k] ≤ C1pk(T ), where
C1 > 0 is a constant and pk(x) is a polynomial of degree k. The constant C1 > 0 and the polynomial
pk(·) can be chosen independent of n and they may depend on k. Using these estimates and letting
T > 1, we have

IE[||Ân||2k
T ] ≤ C2pk(T ) ≤ C̃k(1 + T k),

where C2 > 0 and C̃k > 0 are generic constants independent of n. Consequently, using Hölder’s
inequality,

IE[||Ân||mT ] ≤ Km(1 + Tm/2), (6.12)

where Km > 0 is a constant independent of n. Since An(T ) ≤ (
√
nÂn(T ) + nC0T ), we can easily

use the above estimate to obtain

IE[(An(T ))k] ≤ Ckn
k(1 + T k) for each k ≥ 1, (6.13)

where Ck > 0 is a generic constant independent of n and T .
Next, we intend to estimate IE[ sup

t∈[0,T ]
|M̂v

n(Ān(t))|m]. Consider the filtration (F̂n
j )j≥1 introduced

in (3.2). Let T > 0 be fixed. Then An(T ) is a stopping time with respect to this filtration (F̂n
j )j≥1,

since [An(T ) = k] = [tnk ≤ T < tnk+1] ∈ F̂n
k . We introduce a sequence of random variables related

to the n-th system by

Sj =
1√
n

j∑
i=1

(vi − 1)1[Vn(tni −)<dn
i ] and S0 = 0. (6.14)

We suppress the dependence of Sj on n for simplicity of the presentation. Following an argument
similar to the establishment of martingale property of Mv(n) in (2.4), we observe that (Sj)j≥1 is a
martingale with respect to the filtration (F̂n

j )j≥1. Next, observe that

sup
t∈[0,T ]

|M̂v
n(Ān(t))|m = sup

j≤An(T )
|Sj |m. (6.15)
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Hence, we can use the fact that An(T ) is an (F̂n
j )-stopping time to estimate IE[ sup

j≤An(T )
|Sj |m].

We intend to use Rosenthal’s inequality for square integrable martingales (see, e.g., [28]). First
notice that the predictable quadratic variation process of (Sj) satisfies 〈Sj〉 ≤ σ2

sj/n. Using Rosen-
thal’s inequality (Theorem 1 in Section 2 of [28] with p = m and the stopping time S ≡ An(T )
therein), we obtain

IE

[
sup

j≤An(T )
|Sj |m

]
≤ Cm

[
σm

nm/2
IE
(
An(T )m/2

)
+ IE

(
(∆S)∗An(T )

)m
]
, (6.16)

where Cm > 0 is a constant depending only on m and (∆S)∗t ≡ sups≤t |∆Ss|. It is easy to observe
that

IE
(
(∆S)∗An(T )

)m
≤ 1
nm/2

IE

(
sup

j≤An(T )
|vj − 1|m

)
.

Using (6.13) and the fact that
[
IE
(
An(T )m/2

)]2 ≤ IE[An(T )m], we have

σm

nm/2
IE
(
An(T )m/2

)
≤ C̄1(1 + Tm/2), (6.17)

where C̄1 > 0 is a constant independent of n and T . To estimate the second term in (6.16), we let
K > 2 be a constant independent of n and T , and we pick the precise value of K later. We consider

IE

(
sup

j≤An(T )
|vj − 1|m

)
≤ IE

(
sup

j≤KnT
|vj − 1|m

)
+ IE

(
sup

j≤An(T )
|vj − 1|m1[An(T )>KnT ]

)
. (6.18)

Using (A2) and the estimates there in the Appendix, IE(supj≤KnT |vj−1|m) ≤ C̄2nT , where C̄2 > 0
is a constant independent of n and T . Since m > 2, we have

1
nm/2

IE

(
sup

j≤KnT
|vi − 1|m

)
≤ C̄2T. (6.19)

Next, we consider J ≡ IE
(
supj≤An(T ) |vj − 1|m1[An(T )>KnT ]

)
. From (2.15), it follows that An(T ) ≤

Yn(nC0T ) where C0 > 0 is the constant in Assumption 3.2 part (i) and Yn is a standard Poisson
process. Hence

J ≤
∑

k>KnT

IE

(
sup
j≤k

|vj − 1|m1[Yn(nC0T )=k]

)
.

Now we let p = (1+ ε) and q = 1+ 1
ε so that 1

p + 1
q = 1, where ε > 0 is as in (6.6). Then by Hölder’s

inequality,

J ≤
∑

k>KnT

[
IE

(
sup
j≤k

|vj − 1|m(1+ε)

)]1/(1+ε)

· [IP [Yn(nC0T ) = k]]ε/(1+ε) .

Using (6.6) together with (A1) and (A2) in the Appendix, we have IE
(
supj≤k |vj − 1|m(1+ε)

)
≤ C̄3k,

where C̄3 > 0 is a generic constant independent of n and T . Furthermore, IP [Yn(nC0T ) = k] =

e−nC0T (nC0T )k

k! . Using these two estimates and by a simple algebraic manipulation, we derive

J ≤ C̄4(nC0T )ε/(1+ε)e−nC0Tε/(1+ε)
∞∑

k=KnT

k

(
(nC0T )k

k!

)ε/(1+ε)

,
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where C̄4 > 0 is a generic constant independent of n and T . Next, we use the fact that log(k!)1/q ≥
1
q (k log k− k) where q = 1 + 1

ε and thus (k!)ε/(1+ε) ≥
(

k
e

)kε/(1+ε)
. To simplify the notation, we also

introduce the function g(x) = x1/qe−x/q for all x ≥ 0. Notice that g is positive, continuous, and
limx→∞ g(x) = 0. Thus, g(·) is bounded and 0 ≤ g(x) ≤ M̄ , where M̄ = g(1). Then we obtain

J ≤ C̄4M̄
∞∑

k=KnT

k

[(
eC0

K

)ε/(1+ε)
]k

.

Now, we choose the constant K > 0 so that
(

eC0
K

)ε/(1+ε)
< 1

2 . Then we have

J ≤ C̄4M̄

∞∑
k=0

k

(
1
2

)k

<∞ (6.20)

and all the constants on the right hand side are independent of n and T . Therefore, combining
(6.16)–(6.20), we obtain the estimate

IE

[
sup

j≤An(T )
|Sj |m

]
≤ C̄m[1 + Tm/2],

where C̄m > 0 is a constant independent of n and T .
Thus, we have

IE

[
sup

t∈[0,T ]
|M̂v

n(Ān(t))|m
]
≤ K̄m(1 + Tm/2), (6.21)

where K̄m > 0 is a generic constant independent of n and T . A very similar computation for
IE[ sup

t∈[0,T ]
|M̂d

n(Ān(t))|m] yields

IE

[
sup

t∈[0,T ]
|M̂d

n(Ān(t))|m
]
≤ K̂m(1 + Tm/2), (6.22)

where K̂m > 0 is a generic constant independent of n and T . Combining (6.12), (6.21) and (6.22),
desired conclusion (6.8) follows.

Next, we prove the following theorem which is of independent interest and it complements
Theorem 4.1 and Proposition 4.3.

Theorem 6.4. In addition to the basic assumptions in Section 3, assume (6.6) to hold. Then

lim
n→∞

IE [||Vn||mT ] = 0, (6.23)

where m ≥ 2 is given in (6.6).

Proof. Let the processes Xn and Yn be described by (4.2) and (4.10), respectively. Then using
(4.12) and the Lipschitz continuity of the Skorokhod map Γ in (4.1), we have

0 ≤ ||Vn||T ≤ 2||Yn||T . (6.24)
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But using (4.2), (4.37) and a simple algebraic manipulation, we can write Yn(t) = 1√
n
ξn(t) +∫ t

0 [λ(V̂n(s)/
√
n)− 1]ds for all t ≥ 0. Thus we have

IE(||Yn||mT ) ≤ Cm

[
1

nm/2
IE(||ξn||mT ) + IE

(∫ T

0

∣∣∣∣∣λn

(
V̂n(s)√
n

)
− 1

∣∣∣∣∣ ds
)m]

, (6.25)

where Cm > 0 is a constant independent of n and T . Also, notice that

IE

(∫ T

0

∣∣∣∣∣λn

(
V̂n(s)√
n

)
− 1

∣∣∣∣∣ ds
)m

≤ Tm−1IE

(∫ T

0

∣∣∣∣∣λn

(
V̂n(s)√
n

)
− 1

∣∣∣∣∣
m

ds

)

≤ Tm−1

[
IE

(∫ T

0

∣∣∣∣∣λn

(
V̂n(s)√
n

)
− 1

∣∣∣∣∣
m

ds1[||Vn||T≤K]

)
+ IE

(∫ T

0

∣∣∣∣∣λn

(
V̂n(s)√
n

)
− 1

∣∣∣∣∣
m

ds1[||Vn||T >K]

)]
,

where K > 0 is a constant. Hence using part (i) of Assumption 3.2, we have

IE

(∫ T

0

∣∣∣∣∣λn

(
V̂n(s)√
n

)
− 1

∣∣∣∣∣
m

ds

)
≤ Tm

[
sup

x∈[0,K]
|λn(x)− 1|+ (C0 + 1)mIP [||Vn||T > K]

]
. (6.26)

The first term in the right hand side of (6.26) tends to zero as n→∞, by part (ii) of Assumption
3.2, and the second term also tends to zero as n → ∞ by Theorem 4.1. Using this together with
(6.11) in (6.25), yields lim

n→∞
IE(||Yn||mT ) = 0. Then we can use (6.24) to reach the desired conclusion

(6.23). This completes the proof.

Remark 6.5. If IE(v2+ε
i ) <∞ for some ε > 0 then lim

n→∞
IE(||Yn||2T ) = 0 holds.

Lemma 6.6. In addition to the basic assumptions in Section 3, assume (6.5)–(6.8) to hold. Then

sup
n≥1

IE

(
√
n

∫ T

0

(
λn

(
V̂n(s)√
n

)
− 1

)+

ds

)m

≤ Km(1 + T 2m). (6.27)

Here Km > 0 is a constant independent of n and T .

Proof. Assuming (6.8), we obtain

IE

(
√
n

∫ T

0

(
λn

(
V̂n(s)√
n

)
− 1

)+

ds

)m

≤ TmIE(A+B||Vn||T )m ≤ C̃mT
m[1+IE(||Vn||mT )], (6.28)

where C̃m > 0 is a constant independent of n and T . The constants A > 0 and B > 0 are as in
(6.8). Next, by (6.24), IE||Vn||mT ≤ 2mIE||Yn||mT . Then, we can employ (6.25) together with (6.11)
to obtain IE||Yn||mT ≤ K̃m[1 + Tm/2 + Tm], where K̃m > 0 is a generic constant independent of n
and T . Combining these facts with (6.28), the desired result follows.

Proposition 6.7. Under the assumptions of Theorem 6.2,

IE||V̂n||mT ≤ Km[1 + T 2m], (6.29)

where Km > 0 is a constant independent of n and T .
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Proof. Let the process Ẑn be as in the proof of Proposition 4.3. Then ||V̂n||T ≤ 2||Ẑn||T for all
T > 0 as explained there. Moreover, Ẑn(t) = ξn(t) +

√
n
∫ t
0 (λn(V̂n(s)/

√
n) − 1)+ds for all t ≥ 0,

where ξn is as in Lemma 6.3. Consequently,

IE||Ẑn||mT ≤ Cm

(
IE||ξn||mT + IE[

√
n

∫ t

0
(λn(V̂n(s)/

√
n)− 1)+ds]m

)
,

where Cm > 0 is a generic constant independent of n and T . Using this estimate, (6.11), (6.27),
and the fact that IE||V̂n||mT ≤ 2mIE||Ẑn||mT , we obtain (6.29).

Remark 6.8. The above proposition strengthens the result in Theorem 6.4. The estimate (6.29)
implies that IE||Vn||mT ≤ Km(1 + T 2m)/(

√
n)m.

In the following proposition, we obtain uniform L2-estimates for 1√
n

∫ T
0 Fn(V̂n(s−)/

√
n)dAn(s)

and for
√
n
∫ T
0 |λn(V̂n(s)/

√
n)− 1|ds.

Proposition 6.9. Under the assumptions of Theorem 6.2, the followings hold:

(i) IE
[

1√
n

∫ T
0 Fn(V̂n(s−)/

√
n)dAn(s)

]2
≤ C̄1(1 + T 2(m+1)) and

(ii) IE
[√

n
∫ T
0 |λn(V̂n(s)/

√
n)− 1|ds

]2
≤ C̄2(1 + T 2(m+1)).

As a consequence,
IE(L̂n(T ))2 ≤ C̄3(1 + T 2(m+1)), (6.30)

where L̂n is as in (6.1). Here C̄1, C̄2, C̄3 ∈ (0,∞) are generic constants independent of n and T .

Proof. Notice that 0 ≤ 1√
n

∫ T
0 Fn(V̂n(s−)/

√
n)dAn(s) ≤ 1√

n
Fn(||V̂n||T /

√
n)An(T ). Using this to-

gether with (6.9), we have

0 ≤ 1√
n

∫ T

0
Fn(V̂n(s−)/

√
n)dAn(s) ≤ C1Ān(T )(||V̂n||T + ||V̂n||r+1

T ),

where C1 > 0 is a constant independent of n and T . Consequently,

IE

[
1√
n

∫ T

0
Fn

(
V̂n(s)√
n

)
dAn(s)

]2

≤ C2IE
[
Ān(T )2(||V̂n||2T + ||V̂n||2(r+1)

T )
]
, (6.31)

where C2 > 0 is a constant independent of n and T . Using Hölder’s inequality, we obtain

IE[Ān(T )2||V̂n||2T ] ≤
[
IE||V̂n||mT

]2/m [
IE(Ān(T ))(2m)/(m−2)

](m−2)/m

≤ K1(1 + T 2m)2/m(1 + T 2m/(m−2))(m−2)/m

≤ K2(1 + T 4)(1 + T 2) ≤ K3(1 + T 6), (6.32)

where the second inequality follows from (6.29) and (6.13). Here Ki > 0 (i = 1, 2, 3) are constants
independent of n and T . Next we estimate the term IE[Ān(T )2||V̂n||2(r+1)

T ]. By (6.9), 2(r+ 1) < m
and we take p = m

2(r+1) > 1 and q = 1
1−1/p > 1. Thus 1

p + 1
q = 1. Then

IE
[
Ān(T )2||V̂n||2(r+1)

T

]
≤

[
IE||V̂n||mT

]1/p [
IEĀn(T )2q

]1/q ≤ K̃1(1 + T 2m)1/p(1 + T 2q)1/q

≤ K̃2(1 + T 2m)(1 + T 2) ≤ K̃3(1 + T 2(m+1)), (6.33)
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where the second inequality follows from (6.29), (6.13), and K̃i > 0 (i = 1, 2, 3) are constants
independent of n and T . Since m > 2, by combining (6.31)–(6.33) we obtain part (i).

For part (ii), notice that

IE

[√
n

∫ T

0
|λn(V̂n(s)/

√
n)− 1|ds

]2

≤ TIE

∫ T

0

[√
n|λn(V̂n(s)/

√
n)− 1|

]2
ds. (6.34)

By (6.7), we have

IE

[∫ T

0
[
√
n|λn(V̂n(s)/

√
n)− 1|]2ds1[||Vn||T≤δ0]

]
≤M2T, (6.35)

where M > 0 is a constant independent of n and T as given in (6.7). Also, since |λn(x)−1| ≤ C0+1
where C0 is as in Assumption 3.2, we obtain

IE

[∫ T

0
[
√
n|λn(V̂n(s)/

√
n)− 1|]2ds1[||Vn||T >δ0]

]
≤ (C0 + 1)2TnIP [||Vn||T > δ0]

≤ (C0 + 1)2T
n

nm/2

IE(||V̂n||mT )
δm
0

, (6.36)

where (6.36) is from Chebychev’s inequality. Since m > 2, n
nm/2 < 1 and by (6.29), the left side of

(6.36) is bounded above by C̃0(1+T 2m) for some constant C̃0 > 0. Thus by combining (6.34)–(6.36),
we establish part (ii).

For (6.30), using (6.1) and (6.2), we notice that

L̂n(T ) = V̂n(T ) +
1√
n

∫ T

0
Fn

(
V̂n(s−)√

n

)
dAn(s)− ξn(T )−

√
n

∫ T

0

[
λn

(
V̂n(s)√
n

)
− 1

]
ds, (6.37)

where ξn(·) is described in (4.39). From (6.11), (6.29) and Jensen’s inequality, we have

IE[|ξn(T )|2] ≤ (IE[||ξn||mT ])2/m ≤ K1(1 + Tm/2)2/m ≤ K̃1(1 + T ) and,
IE[|V̂n(T )|2] ≤ (IE[||V̂n||mT ])2/m ≤ K2(1 + T 2m)2/m ≤ K̃2(1 + T 2).

Notice that m > 2, K̃1 = 2K1, K̃2 = 2K2 and these constants are independent of n and T . Now
using these two estimates together with parts (i) and (ii) of this proposition in (6.37), we obtain
(6.30).

With all these preliminary results in hand, now we are able to prove Theorem 6.2.

Proof of Theorem 6.2. First we consider the cost functional J(V̂n, L̂n) in (6.3). With the poly-
nomial bound (6.30) in hand, using integration by parts, it can be easily verified that
IE[
∫∞
0 e−γtdL̂n(t)] = γIE[

∫∞
0 e−γtL̂n(t)dt]. Therefore, we have the representation

J(V̂n, L̂n) = IE

∫ ∞

0
e−γt[C(V̂n(t)) + γpL̂n(t)]dt. (6.38)

Since (V̂n, L̂n) → (Z,L) a.s. as n→∞, using (6.30) together with Fatou’s lemma, we obtain

IE[L(T )2] ≤ C̄3(1 + T 2(m+1)), (6.39)
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where C̄3 > 0 is a constant as in (6.30). Hence, using integration by parts again, we can also write
J(Z,L) described in (6.4) as

J(Z,L) = IE

∫ ∞

0
e−γt[C(Z(t)) + γpL(t)]dt. (6.40)

Let us consider the term IE[
∫∞
0 e−γtC(V̂n(t))dt] in (6.38). Let µ be the probability measure on

the Borel σ-algebra B of [0,∞), defined by µ(B) = γ
∫
B e

−γtdt for each Borel set B. Consider the
probability measure µ ⊗ IP on the space [0,∞) × Ω equipped with the product σ-algebra B ⊗ F ,
where (Ω,F , IP ) is our probability space. Then using Fubini’s theorem, we have

IEµ⊗IP [C(V̂n)] = γIE

[∫ ∞

0
e−γtC(V̂n(t))dt

]
. (6.41)

Since V̂n(t) → Z(t) for all t ≥ 0 a.s., we have C(V̂n(t)) converges to C(Z) almost surely in µ⊗ IP
as n → ∞. Next, we show the uniform integrability of (C(V̂n)). Let m > 2 be as in (6.6). Using
the assumptions (6.5), (6.6) and the simple inequality 0 ≤ (1 + xr) ≤ 2(1 + x)r ≤ 2r(1 + xr) for
r = m

` > 1 and x ≥ 0, we obtain

sup
n≥1

IEµ⊗IP [(C(V̂n))r] ≤ γK1 sup
n≥1

IE

[∫ ∞

0
e−γt(1 + (V̂n(t))m)dt

]
≤ γK2

∫ ∞

0
e−γt(1 + t2m)dt <∞,

where the second inequality follows from (6.29). The constants K1,K2 > 0 are independent of n.
Hence

IEµ⊗IP [C(V̂n)] <∞ for all n ≥ 1, and lim
n→∞

IEµ⊗IP [C(V̂n)] = IEµ⊗IP [C(Z)].

Indeed, IEµ⊗IP [C(Z)] is finite and bounded above by γK2

∫∞
0 e−γt(1 + t2m)dt. Hence

lim
n→∞

γ

∫ ∞

0
e−γtC(V̂n(t))dt = γIE

∫ ∞

0
e−γtC(Z(t))dt. (6.42)

In a similar manner, we can establish uniform integrability of (L̂n) by using (6.30),

sup
n≥1

IEµ⊗IP [(L̂n)2] = γ sup
n≥1

IE

[∫ ∞

0
e−γt(L̂n(t))2)dt

]
≤ C̄3γ

∫ ∞

0
e−γt(1 + t2(m+1))dt <∞,

where C̄3 > 0 is a constant independent of n as in (6.30). Hence, using Theorem 4.8, we can
conclude

lim
n→∞

IEµ⊗IP [L̂n] = IEµ⊗IP [L] and IEµ⊗IP [L] ≤ C̄3γ

∫ ∞

0
e−γt(1 + t2(m+1))dt <∞.

This yields

lim
n→∞

IE

∫ ∞

0
e−γtL̂n(t)dt = IE

∫ ∞

0
e−γtL(t)dt. (6.43)

Since γ > 0 and p > 0 are constants in (6.38) and (6.40), it immediately follows that J(V̂n, L̂n)
converges to J(Z,L) as n→∞. This completes the proof of Theorem 6.2.

Remark 6.10. If the cost functional J(V̂n, L̂n) does not deal with the idle time costs, that is if
p = 0, then we do not need the assumptions (6.7) and (6.9). In that case, Proposition 6.9 also is
not necessary and the estimate (6.29) is sufficient to obtain Theorem 6.2 with p = 0.
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Appendix

The following lemma was used in the proofs of Proposition 4.10 and Lemma 6.3. We include it for
completeness.

Lemma 6.11. Let T > 0 be fixed. Consider a sequence of non-negative i.i.d. random variables
(Xn) with IE(Xn) <∞. Then

lim
n→∞

1
n
IE

[
max

1≤j≤[nT ]
Xj

]
= 0. (A1)

Proof. Without loss of generality, we can simply take T > 2. Let G be the distribution function of
Xn and introduce u = sup{x ≥ 0 : G(x) < 1}. Notice that 0 ≤ u ≤ +∞. Since (Xn) is i.i.d., we
have IP [ max

1≤j≤[nT ]
Xj ≤ x] = G(x)[nT ] and therefore,

IE

[
max

1≤j≤[nT ]
Xj

]
=

∫ u

0
(1−G(x)[nT ])dx

=
∫ u

0

∫ u

x
[nT ]G(y)[nT ]−1dG(y)dx = [nT ]

∫ u

0
yG(y)[nT ]−1dG(y),

by using Fubini’s theorem. Consequently,

0 ≤ 1
n
IE

[
max

1≤j≤[nT ]
Xj

]
≤ T

∫ u

0
yG(y)[nT ]−1dG(y) ≤ T

∫ u

0
ydG(y). (A2)

Since [nT ] ≥ 2, 0 ≤ yG(y)[nT ]−1 ≤ y for all y ≥ 0 and lim
n→∞

yG(y)[nT ]−1 = 0 for 0 ≤ y ≤ u. On

the other hand,
∫ u
0 ydG(y) < ∞ since IE(Xn) < ∞. Therefore, by the dominated convergence

theorem, we conclude lim
n→∞

∫ u
0 yG(y)[nT ]−1dG(y) = 0. Hence, using this in (A2) we obtain the

desired conclusion (A1). This completes the proof.
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